Libor and forward process models from an affine point of view
Another didactic note

Jan Kallsen

Universität zu Kiel

Lausanne, May 22, 2017
Outline

1. Interest rate models
2. Affine processes and integration
3. Affine models: factor, HJM, exponential-rational, linear-rational
4. LIBOR models: the classical (or lognormal) point of view
5. LIBOR models: the forward process (or affine) point of view
Outline

1. Interest rate models
2. Affine processes and integration
3. Affine models: factor, HJM, exponential-rational, linear-rational
4. LIBOR models: the classical (or lognormal) point of view
5. LIBOR models: the forward process (or affine) point of view
Interest rate models
– from a basic structural point of view

Desirable properties: tractability and flexibility

Objects of interest:

- zero coupon bonds $B(t, T)$ with $B(T, T) = 1$
- bond options with time-T_0-payoff $f(B(T_0, T_1))$ with $T_0 < T_1$
- caps/floors with caplet/floorlet time-T_n-payoffs
 $(L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T$ resp. $(\ell - L(T_{n-1}, T_{n-1}, T_n))^+ \Delta T$ for $L(t, T_{n-1}, T_n) := \frac{B(t, T_{n-1}) - B(t, T_n)}{B(t, T_n) \Delta T}$
- swaptions with time-T_0-payoff
 $(1 + B(T_0, T_N) - \sum_{n=1}^N B(T_0, T_n) \ell \Delta T)^+$
Interest rate models
– from a basic structural point of view

- Desirable properties: tractability and flexibility
- Objects of interest:
 - zero coupon bonds $B(t, T)$ with $B(T, T) = 1$
 - bond options with time-T_0-payoff $f(B(T_0, T_1))$ with $T_0 < T_1$
 - caps/floors with caplet/floorlet time-T_n-payoffs
 $$(L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T \text{ resp. } ((\ell - L(T_{n-1}, T_{n-1}, T_n))^+ \Delta T \text{ for } L(t, T_{n-1}, T_n) := \frac{B(t, T_{n-1}) - B(t, T_n)}{B(t, T_n) \Delta T}$$
 - swaptions with time-T_0-payoff
 $$(1 + B(T_0, T_N) - \sum_{n=1}^{N} B(T_0, T_n) \ell \Delta T)^+$$
Interest rate models
– from a basic structural point of view

- Desirable properties: tractability and flexibility
- Objects of interest:
 - zero coupon bonds $B(t, T)$ with $B(T, T) = 1$
 - bond options with time-T_0-payoff $f(B(T_0, T_1))$ with $T_0 < T_1$
 - caps/floors with caplet/floorlet time-T_n-payoffs
 $\left(L(T_{n-1}, T_{n-1}, T_n) - \ell \right)^+ \Delta T$ resp. $\left(\ell - L(T_{n-1}, T_{n-1}, T_n) \right)^+ \Delta T$ for
 $L(t, T_{n-1}, T_n) := \frac{B(t, T_{n-1}) - B(t, T_n)}{B(t, T_n) \Delta T}$
 - swaptions with time-T_0-payoff
 $\left(1 + B(T_0, T_N) - \sum_{n=1}^N B(T_0, T_n) \ell \Delta T \right)^+$
Desirable properties: tractability and flexibility

Objects of interest:

- zero coupon bonds $B(t, T)$ with $B(T, T) = 1$
- bond options with time-T_0-payoff $f(B(T_0, T_1))$ with $T_0 < T_1$
- caps/floors with caplet/floorlet time-T_n-payoffs
 $$(L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T$$
 resp.
 $$((\ell - L(T_{n-1}, T_{n-1}, T_n))^+ \Delta T$$
 for
 $$L(t, T_{n-1}, T_n) := \frac{B(t, T_{n-1}) - B(t, T_n)}{B(t, T_n) \Delta T}$$
- swaptions with time-T_0-payoff
 $$(1 + B(T_0, T_N) - \sum_{n=1}^N B(T_0, T_n) \ell \Delta T)^+$$
Interest rate models
– from a basic structural point of view

Desirable properties: tractability and flexibility

Objects of interest:

- zero coupon bonds $B(t, T)$ with $B(T, T) = 1$
- bond options with time-T_0-payoff $f(B(T_0, T_1))$ with $T_0 < T_1$
- caps/floors with caplet/floorlet time-T_n-payoffs $\left(L(T_{n-1}, T_{n-1}, T_n) - \ell \right)^+ \Delta T$ resp. $\left(\ell - L(T_{n-1}, T_{n-1}, T_n) \right)^+ \Delta T$ for $L(t, T_{n-1}, T_n) := \frac{B(t, T_{n-1}) - B(t, T_n)}{B(t, T_n) \Delta T}$
- swaptions with time-T_0-payoff $\left(1 + B(T_0, T_N) - \sum_{n=1}^{N} B(T_0, T_n) \ell \Delta T \right)^+$
Interest rate models
– from a basic structural point of view

- Desirable properties: tractability and flexibility

- Objects of interest:
 - zero coupon bonds $B(t, T)$ with $B(T, T) = 1$
 - bond options with time-T_0-payoff $f(B(T_0, T_1))$ with $T_0 < T_1$
 - caps/floors with caplet/floorlet time-T_n-payoffs
 $$(L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T$$
 resp. $$(\ell - L(T_{n-1}, T_{n-1}, T_n))^+ \Delta T$$
 for $L(t, T_{n-1}, T_n) := \frac{B(t, T_{n-1}) - B(t, T_n)}{B(t, T_n) \Delta T}$
 - swaptions with time-T_0-payoff
 $$(1 + B(T_0, T_N) - \sum_{n=1}^N B(T_0, T_n) \ell \Delta T)^+$$
Interest rate models
– from a basic structural point of view

Desirable properties: tractability and flexibility

Objects of interest:

▶ zero coupon bonds $B(t, T)$ with $B(T, T) = 1$
▶ bond options with time-T_0-payoff $f(B(T_0, T_1))$ with $T_0 < T_1$
▶ caps/floors with caplet/floorlet time-T_n-payoffs
\[
(L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T \text{ resp. } (\ell - L(T_{n-1}, T_{n-1}, T_n))^+ \Delta T
\]

\[
L(t, T_{n-1}, T_n) := \frac{B(t, T_{n-1}) - B(t, T_n)}{B(t, T_n) \Delta T}
\]
▶ swaptions with time-T_0-payoff
\[
(1 + B(T_0, T_N) - \sum_{n=1}^N B(T_0, T_n) \ell \Delta T)^+
\]
Interest rate models
– from a basic structural point of view, ct’d

- Caplets/floorlets reduce to put/call options on the bond:

\[
\text{Value}\left(\text{caplet with time-}T_n\text{-payoff} \ (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T\right) \\
= \text{Value}\left(\text{time-}T_n\text{-payoff} \ (1 - (1 + \ell \Delta T)B(T_{n-1}, T_n))^+\right)
\]

- Swaptions sometimes reduce to put options on the bond:

 - consider time-\(T_0\)-payoff \(H = (K - \sum_{n=1}^{N} c_n B(T_0, T_n))^+\)
 - suppose \(B(T_0, T_n) = \pi(T_0, T_n, X(T_0))\) for some univariate process \(X\), strictly decreasing functions \(\pi(T_0, T_n, \cdot)\)
 - let \(x_0\) be solution to \(K - \sum_{n=1}^{N} c_n \pi(T_0, T_n, x) = 0\)
 - set \(K_n := \pi(T_0, T_n, x_0)\) for \(n = 1, \ldots, N\)
 - Jamshidian’s representation: \(H = \sum_{n=1}^{N} c_n (K_n - B(T_0, T_n))^+\)
Interest rate models
– from a basic structural point of view, ct’d

Caplets/floorlets reduce to put/call options on the bond:

Value(caplet with time-\(T_n\)-payoff \((L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T\))

\[= \text{Value}\left(\text{time-}\,T_n\text{-payoff}\,\left(1 - (1 + \ell \Delta T)B(T_{n-1}, T_n)\right)^+\right)\]

Swaptions sometimes reduce to put options on the bond:

- consider time-\(T_0\)-payoff \(H = (K - \sum_{n=1}^{N} c_n B(T_0, T_n))^+\)
- suppose \(B(T_0, T_n) = \pi(T_0, T_n, X(T_0))\) for some univariate process \(X\), strictly decreasing functions \(\pi(T_0, T_n, \cdot)\)
- let \(x_0\) be solution to \(K - \sum_{n=1}^{N} c_n \pi(T_0, T_n, x) = 0\)
- set \(K_n := \pi(T_0, T_n, x_0)\) for \(n = 1, \ldots, N\)
- Jamshidian’s representation: \(H = \sum_{n=1}^{N} c_n (K_n - B(T_0, T_n))^+\)
Interest rate models
– from a basic structural point of view, ct’d

Caplets/floorlets reduce to put/call options on the bond:

\[
\text{Value}\left(\text{caplet with time-} T_n\text{-payoff } (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T\right) \\
= \text{Value}\left(\text{time-} T_n\text{-payoff } (1 - (1 + \ell \Delta T)B(T_{n-1}, T_n))^+\right)
\]

Swaptions sometimes reduce to put options on the bond:

- consider time-\(T_0 \)-payoff \(H = (K - \sum_{n=1}^{N} c_n B(T_0, T_n))^+ \)
- suppose \(B(T_0, T_n) = \pi(T_0, T_n, X(T_0)) \) for some univariate process \(X \), strictly decreasing functions \(\pi(T_0, T_n, \cdot) \)
- let \(x_0 \) be solution to \(K - \sum_{n=1}^{N} c_n \pi(T_0, T_n, x) = 0 \)
- set \(K_n := \pi(T_0, T_n, x_0) \) for \(n = 1, \ldots, N \)
- Jamshidian’s representation: \(H = \sum_{n=1}^{N} c_n (K_n - B(T_0, T_n))^+ \)
Caplets/floorlets reduce to put/call options on the bond:

$$\text{Value}\left(\text{caplet with time-} T_n\text{-payoff } (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T\right)$$

$$= \text{Value}\left(\text{time-} T_n\text{-payoff } (1 - (1 + \ell \Delta T) B(T_{n-1}, T_n))^+\right)$$

Swaptions sometimes reduce to put options on the bond:

- consider time- T_0-payoff $H = (K - \sum_{n=1}^{N} c_n B(T_0, T_n))^+$
- suppose $B(T_0, T_n) = \pi(T_0, T_n, X(T_0))$ for some univariate process X, strictly decreasing functions $\pi(T_0, T_n, \cdot)$
- let x_0 be solution to $K - \sum_{n=1}^{N} c_n \pi(T_0, T_n, x) = 0$
- set $K_n := \pi(T_0, T_n, x_0)$ for $n = 1, \ldots, N$
- Jamshidian’s representation: $H = \sum_{n=1}^{N} c_n (K_n - B(T_0, T_n))^+$
Caplets/facelets reduce to put/call options on the bond:

\[
\text{Value}\left(\text{caplet with time-} T_n\text{-payoff } (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T\right) \\
= \text{Value}\left(\text{time-} T_n\text{-payoff } (1 - (1 + \ell \Delta T)B(T_{n-1}, T_n))^+\right)
\]

Swaptions sometimes reduce to put options on the bond:

- consider time-\(T_0\)-payoff \(H = (K - \sum_{n=1}^{N} c_n B(T_0, T_n))^+\)
- suppose \(B(T_0, T_n) = \pi(T_0, T_n, X(T_0))\) for some univariate process \(X\), strictly decreasing functions \(\pi(T_0, T_n, \cdot)\)
- let \(x_0\) be solution to \(K - \sum_{n=1}^{N} c_n \pi(T_0, T_n, x) = 0\)
- set \(K_n := \pi(T_0, T_n, x_0)\) for \(n = 1, \ldots, N\)
- Jamshidian’s representation: \(H = \sum_{n=1}^{N} c_n (K_n - B(T_0, T_n))^+\)
Interest rate models
– from a basic structural point of view, ct’d

- Caplets/floorlets reduce to put/call options on the bond:

\[
\text{Value}(\text{caplet with time-} T_n\text{-payoff } (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T) = \text{Value}(\text{time-} T_n\text{-payoff } (1 - (1 + \ell \Delta T)B(T_{n-1}, T_n))^+)
\]

- Swaptions sometimes reduce to put options on the bond:
 - consider time- \(T_0 \)-payoff \(H = (K - \sum_{n=1}^{N} c_n B(T_0, T_n))^+ \)
 - suppose \(B(T_0, T_n) = \pi(T_0, T_n, X(T_0)) \) for some univariate process \(X \), strictly decreasing functions \(\pi(T_0, T_n, \cdot) \)
 - let \(x_0 \) be solution to \(K - \sum_{n=1}^{N} c_n \pi(T_0, T_n, x) = 0 \)
 - set \(K_n := \pi(T_0, T_n, x_0) \) for \(n = 1, \ldots, N \)
 - Jamshidian’s representation: \(H = \sum_{n=1}^{N} c_n (K_n - B(T_0, T_n))^+ \)
Caplets/floorlets reduce to put/call options on the bond:

\[
\text{Value}\left(\text{caplet with time-} T_n\text{-payoff } (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T\right) = \text{Value}\left(\text{time-} T_n\text{-payoff } (1 - (1 + \ell \Delta T)B(T_{n-1}, T_n))^+\right)
\]

Swaptions sometimes reduce to put options on the bond:

- consider time-\(T_0\)-payoff \(H = (K - \sum_{n=1}^{N} c_n B(T_0, T_n))^+ \)
- suppose \(B(T_0, T_n) = \pi(T_0, T_n, X(T_0)) \) for some univariate process \(X \), strictly decreasing functions \(\pi(T_0, T_n, \cdot) \)
- let \(x_0 \) be solution to \(K - \sum_{n=1}^{N} c_n \pi(T_0, T_n, x) = 0 \)
- set \(K_n := \pi(T_0, T_n, x_0) \) for \(n = 1, \ldots, N \)
- Jamshidian’s representation: \(H = \sum_{n=1}^{N} c_n (K_n - B(T_0, T_n))^+ \)
Interest rate models
– from a basic structural point of view, ct’d

- Caplets/floorlets reduce to put/call options on the bond:

\[
\text{Value}(\text{caplet with time-}T_n\text{-payoff } (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T) = \text{Value}(\text{time-}T_n\text{-payoff } (1 - (1 + \ell \Delta T)B(T_{n-1}, T_n))^+)
\]

- Swaptions sometimes reduce to put options on the bond:

 ▶ consider time-\(T_0\)-payoff \(H = (K - \sum_{n=1}^{N} c_n B(T_0, T_n))^+\)
 ▶ suppose \(B(T_0, T_n) = \pi(T_0, T_n, X(T_0))\) for some univariate process \(X\), strictly decreasing functions \(\pi(T_0, T_n, \cdot)\)
 ▶ let \(x_0\) be solution to \(K - \sum_{n=1}^{N} c_n \pi(T_0, T_n, x) = 0\)
 ▶ set \(K_n := \pi(T_0, T_n, x_0)\) for \(n = 1, \ldots, N\)
 ▶ Jamshidian’s representation: \(H = \sum_{n=1}^{N} c_n (K_n - B(T_0, T_n))^+\)
Outline

1. Interest rate models
2. Affine processes and integration
3. Affine models: factor, HJM, exponential-rational, linear-rational
4. LIBOR models: the classical (or lognormal) point of view
5. LIBOR models: the forward process (or affine) point of view
(Time-inhomogeneous) affine processes
– a tractable and flexible class of processes
(Duffie, Filipović, Schachermayer 2001, Filipović 2005, etc.)

- Affine local exponent or symbol:
 \[q(t, u) := \psi_0(t, u) + \sum_{i=1}^{d} \psi_j(t, u)X_j(t-) \], i.e.
 \[M(t) := e^{iu^\top X(t)} - \int_0^t e^{iu^\top X(s-)} q(s, u)ds, \; u \in \mathbb{R}^d \] local martingale

- Exponentially affine characteristic function:
 \[E(\exp(iu^\top X(s + t)) | \mathcal{F}_s) = \exp(\psi_0(t, u) + \sum_{j=1}^{d} \psi_j(t, u)X_j(s)) \],
 where \(\psi_1, \ldots, d = (\psi_1, \ldots, \psi_d) \) and \(\psi_0 \) solve the ODE system
 \[\frac{d}{dt} \psi_j(t, u) = \psi_j(t, -i\psi_1, \ldots, d(t, u)), \quad \psi_1, \ldots, d(0, u) = iu \]
 \[\psi_0(t, u) := \int_0^t \psi_0(s, -i\psi_1, \ldots, d(s, u))ds \]
(Time-inhomogeneous) affine processes
– a tractable and flexible class of processes
(Duffie, Filipović, Schachermayer 2001, Filipović 2005, etc.)

- Affine local exponent or symbol:
 \[q(t, u) := \psi_0(t, u) + \sum_{i=j}^d \psi_j(t, u)X_j(t-), \text{ i.e.} \]
 \[M(t) := e^{iu^\top X(t)} - \int_0^t e^{iu^\top X(s-)}q(s, u)ds, \quad u \in \mathbb{R}^d \text{ local martingale} \]

- Exponentially affine characteristic function:
 \[E(\exp(iu^\top X(s + t))|\mathcal{F}_s) = \exp(\psi_0(t, u) + \sum_{j=1}^d \psi_j(t, u)X_j(s)), \]
 where \(\psi_1, \ldots, d = (\psi_1, \ldots, \psi_d) \) and \(\psi_0 \) solve the ODE system
 \[\frac{d}{dt} \psi_j(t, u) = \psi_j(t, -i\psi_1, \ldots, d(t, u)), \quad \psi_1, \ldots, d(0, u) = iu \]
 \[\psi_0(t, u) := \int_0^t \psi_0(s, -i\psi_1, \ldots, d(s, u))ds \]
(Time-inhomogeneous) affine processes
– a tractable and flexible class of processes
(Duffie, Filipović, Schachermayer 2001, Filipović 2005, etc.)

- Affine local exponent or symbol:
 \[q(t, u) := \psi_0(t, u) + \sum_{i=j}^d \psi_j(t, u)X_j(t-), \text{ i.e.} \]
 \[M(t) := e^{iu^\top X(t)} - \int_0^t e^{iu^\top X(s-)}q(s, u)ds, \quad u \in \mathbb{R}^d \] local martingale

- Exponentially affine characteristic function:
 \[E\left(\exp\left(iu^\top X(s + t) \right) \bigg| \mathcal{F}_s \right) = \exp\left(\Psi_0(t, u) + \sum_{j=1}^d \Psi_j(t, u)X_j(s) \right), \]
 where \(\Psi_{1,\ldots,d} = (\Psi_1, \ldots, \Psi_d) \) and \(\Psi_0 \) solve the ODE system
 \[\frac{d}{dt} \Psi_j(t, u) = \psi_j(t, -i\Psi_1,\ldots,d(t, u)), \quad \Psi_{1,\ldots,d}(0, u) = iu \]
 \[\Psi_0(t, u) := \int_0^t \psi_0(s, -i\Psi_1,\ldots,d(s, u))ds \]
Affine processes
– a tractable and flexible class of processes, ct’d

- Stability under integration:
 \(\tilde{X} := (X_1, \ldots, X_d, X_{d+1}) \) affine for \(X_{d+1}(t) := \int_0^t X_d(s) \, ds \)

- Stability under “affine” measure changes:
 If \(Q \overset{loc}{\sim} P \) with density process \(Z = \mathcal{E}(X_d) \) or \(Z = \exp(X_d) \),
 \(X \) is affine under \(Q \) as well.

- Joint moments of \((X(t_1), \ldots, X(t_n)) \):
 also explicit in terms of \((\Psi_0, \ldots, \Psi_d) \)

- Generalised moments by integral representation:
 \[
 E(f(X(s + t))|\mathcal{F}_s) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} E(e^{zX(s+t)}|\mathcal{F}_s)\tilde{f}(z) \, dz
 \]
 with bilateral Laplace transform
 \(\tilde{f}(z) := \int_{-\infty}^{\infty} f(x)e^{-zx} \, dx \)
Affine processes
– a tractable and flexible class of processes, ct’d

- Stability under integration:
 \(\tilde{X} := (X_1, \ldots, X_d, X_{d+1}) \) affine for \(X_{d+1}(t) := \int_0^t X_d(s)ds \)

- Stability under “affine” measure changes:
 If \(Q \overset{\text{loc}}{\sim} P \) with density process \(Z = \mathcal{E}(X_d) \) or \(Z = \exp(X_d) \), \(X \) is affine under \(Q \) as well.

- Joint moments of \((X(t_1), \ldots, X(t_n))\):
 also explicit in terms of \((\Psi_0, \ldots, \Psi_d)\)

- Generalised moments by integral representation:
 \[
 E(f(X(s + t))|\mathcal{F}_s) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} E(e^{zX(s+t)}|\mathcal{F}_s)\tilde{f}(z)dz
 \]
 with bilateral Laplace transform
 \(\tilde{f}(z) := \int_{-\infty}^{\infty} f(x)e^{-zx}dx \)
Affine processes
– a tractable and flexible class of processes, ct’d

- Stability under integration:
 \[\tilde{X} := (X_1, \ldots, X_d, X_{d+1}) \] affine for \(X_{d+1}(t) := \int_0^t X_d(s)ds \)

- Stability under “affine” measure changes:
 If \(Q \overset{\text{loc}}{\sim} P \) with density process \(Z = \mathcal{E}(X_d) \) or \(Z = \exp(X_d) \),
 \(X \) is affine under \(Q \) as well.

- Joint moments of \((X(t_1), \ldots, X(t_n)) \):
 also explicit in terms of \((\Psi_0, \ldots, \Psi_d)\)

- Generalised moments by integral representation:
 \[
 E(f(X(s + t))|\mathcal{F}_s) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} E(e^{zX(s+t)}|\mathcal{F}_s)\tilde{f}(z)dz
 \]
 with bilateral Laplace transform
 \[\tilde{f}(z) := \int_{-\infty}^{\infty} f(x)e^{-zx}dx \]
Affine processes
– a tractable and flexible class of processes, ct’d

- Stability under integration:
 \(\tilde{X} := (X_1, \ldots, X_d, X_{d+1}) \) affine for \(X_{d+1}(t) := \int_0^t X_d(s) ds \)

- Stability under “affine” measure changes:
 If \(Q \sim P \) with density process \(Z = E(X_d) \) or \(Z = \exp(X_d) \),
 \(X \) is affine under \(Q \) as well.

- Joint moments of \((X(t_1), \ldots, X(t_n)) \):
 also explicit in terms of \((\Psi_0, \ldots, \Psi_d) \)

- Generalised moments by integral representation:
 \[E(f(X(s + t)) | \mathcal{F}_s) = \frac{1}{2\pi i} \int_{R - i\infty}^{R + i\infty} E(e^{zX(s+t)} | \mathcal{F}_s) \tilde{f}(z) dz \]
 with bilateral Laplace transform
 \[\tilde{f}(z) := \int_{-\infty}^{\infty} f(x) e^{-zx} dx \]
Affine processes
– a tractable and flexible class of processes, ct’d

- Stability under integration:
 \[\tilde{X} := (X_1, \ldots, X_d, X_{d+1}) \text{ affine for } X_{d+1}(t) := \int_0^t X_d(s) \, ds \]

- Stability under “affine” measure changes:
 If \(Q \overset{\text{loc}}{\sim} P \) with density process \(Z = \mathcal{E}(X_d) \) or \(Z = \exp(X_d) \), \(X \) is affine under \(Q \) as well.

- Joint moments of \((X(t_1), \ldots, X(t_n)) \):
 also explicit in terms of \((\Psi_0, \ldots, \Psi_d) \)

- Generalised moments by integral representation:
 \[
 E(f(X(s+t)) | \mathcal{F}_s) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} E(e^{zX(s+t)} | \mathcal{F}_s) \tilde{f}(z) \, dz
 \]
 with bilateral Laplace transform
 \[
 \tilde{f}(z) := \int_{-\infty}^{\infty} f(x) e^{-zx} \, dx
 \]
Outline

1. Interest rate models
2. Affine processes and integration
3. Affine models: factor, HJM, exponential-rational, linear-rational
4. LIBOR models: the classical (or lognormal) point of view
5. LIBOR models: the forward process (or affine) point of view
Short rate or factor models
– based on affine processes

- Numeraire: money market account $S_0(t) = \exp(\int_0^t r(s)ds)$
- Short rate $r(t)$:
 component of \mathbb{R}^d-valued (time-inhomogeneous) affine process
 (under risk-neutral measure Q_0 for S_0)
- Bonds: $B(t, T) = \exp(\psi_0(t, T - t, -i) + \psi_X(t, T - t, -i)^\top X(t))$
 where $J(t) := \int_0^t r(s)ds,$

$$E_{Q_0}(\exp(iu^\top X(s + t) - J(s + t))|\mathcal{F}_s) = \exp(\psi_0(s, t, u) + \psi_X(s, t, u)^\top X(t) - J(s))$$
Short rate or factor models
– based on affine processes

- Numeraire: money market account $S_0(t) = \exp(\int_0^t r(s)ds)$
- Short rate $r(t)$: component of \mathbb{R}^d-valued (time-inhomogeneous) affine process (under risk-neutral measure Q_0 for S_0)
- Bonds: $B(t, T) = \exp(\psi_0(t, T - t, -i) + \psi_X(t, T - t, -i)^TX(t))$

where $J(t) := \int_0^t r(s)ds$,

$$E_{Q_0}(\exp(iu^TX(s + t) - J(s + t))|\mathcal{F}_s) = \exp(\psi_0(s, t, u) + \psi_X(s, t, u)^TX(t) - J(s))$$
Short rate or factor models
– based on affine processes

- Numeraire: money market account $S_0(t) = \exp(\int_0^t r(s)ds)$
- Short rate $r(t)$:
 component of \mathbb{R}^d-valued (time-inhomogeneous) affine process
 (under risk-neutral measure Q_0 for S_0)
- Bonds: $B(t, T) = \exp (\psi_0(t, T - t, -i) + \psi_X(t, T - t, -i)^\top X(t))$
 where $J(t) := \int_0^t r(s)ds$,

$$E_{Q_0} \left(\exp(iu^\top X(s + t) - J(s + t)) | \mathcal{F}_s \right) = \exp (\psi_0(s, t, u) + \psi_X(s, t, u)^\top X(t) - J(s))$$
Short rate or factor models
– based on affine processes

- Numeraire: money market account $S_0(t) = \exp(\int_0^t r(s) ds)$
- Short rate $r(t)$:
 component of \mathbb{R}^d-valued (time-inhomogeneous) affine process
 (under risk-neutral measure Q_0 for S_0)
- Bonds: $B(t, T) = \exp(\psi_0(t, T - t, -i) + \psi_X(t, T - t, -i)^{\top} X(t))$
 where $J(t) := \int_0^t r(s) ds$,

\[
E_{Q_0}(\exp(iu^{\top} X(s + t) - J(s + t))|\mathcal{F}_s)
= \exp(\psi_0(s, t, u) + \psi_X(s, t, u)^{\top} X(t) - J(s))
\]
Short rate or factor models
– based on affine processes, ct’d

- Bond options with time-T_0-payoff $H = (B(T_0, T_1) - K)^+$:
 value $\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_0, T_1}(t, z) \frac{K^1 - z}{z(z-1)} dz$ with

$$\pi_{T_0, T_1}(t, z) = \exp \left(-iz\psi_0(T_0, T_1 - T_0; -i)
+ \psi_0(t, T_0 - t, -iz\psi_X(T_0, T_1 - T_0; -i))
+ \psi_X(t, T_0 - t, -iz\psi_X(T_0, T_1 - T_0; -i))^\top X(t) \right)$$

- Swaptions (in one-factor case $X = r$):
 Jamshidian’s representation
Bond options with time-T_0-payoff $H = (B(T_0, T_1) - K)^+$:

value $\pi(t) = \frac{1}{2\pi i} \int_{R - i\infty}^{R + i\infty} \pi_{T_0, T_1}(t, z) \frac{K^{1-z}}{z(z-1)} dz$ with

$\pi_{T_0, T_1}(t, z) = \exp \left(-iz\psi_0(T_0, T_1 - T_0; -i) \right.
+ \psi_0(t, T_0 - t, -iz\psi_X(T_0, T_1 - T_0; -i))
+ \psi_X(t, T_0 - t, -iz\psi_X(T_0, T_1 - T_0; -i))^\top X(t) \bigg)

Swaptions (in one-factor case $X = r$):
Jamshidian’s representation
Short rate or factor models
– based on affine processes, ct’d

Bond options with time-\(T_0\)-payoff \(H = (B(T_0, T_1) - K)^+\):
value \(\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_0, T_1}(t, z) \frac{K^{1-z}}{z(z-1)} dz\) with

\[
\pi_{T_0, T_1}(t, z) = \exp \left(-iz\psi_0(T_0, T_1 - T_0; -i) \\
+ \psi_0(t, T_0 - t, -iz\psi_X(T_0, T_1 - T_0; -i)) \\
+ \psi_X(t, T_0 - t, -iz\psi_X(T_0, T_1 - T_0; -i))^\top X(t) \right)
\]

Swaptions (in one-factor case \(X = r\):
Jamshidian’s representation
HJM models
– based on affine processes (Heath, Jarrow, Morton 1992, etc.)

- Numeraire: money market account $S_0(t) = \exp(\int_0^t r(s)ds)$
- Forward rates: $df(t, T) = - \frac{d}{dt} \log B(t, T)$
- Forward rate dynamics:
 $$df(t, T) = \alpha(t, T)dt + \sigma(t, T)dX(t),$$
 where $\sigma(t, T)$ deterministic,
 $X \mathbb{R}^d$-valued (time-inhomogeneous) affine process
 (under risk-neutral measure Q_0 for S_0)
- HJM drift condition:
 $$A(t, T) = -\psi_0(t, -i\Sigma(t, T)) + \sum_{m=1}^d \psi_m(t, -i\Sigma(t, T))X_m(t-),$$
 for $A(t, T) := \int_t^T \alpha(t, s)ds$, $\Sigma(t, T) := \int_t^T \sigma(t, s)ds$,
 ψ_0, \ldots, ψ_d exponents corresponding to X
- Implied short rate dynamics:
 $$dr(t) = (\alpha(t, t) + \partial_1 f(t, t))dt + \sigma(t, t)dX(t)$$
HJM models
– based on affine processes (Heath, Jarrow, Morton 1992, etc.)

- Numeraire: money market account $S_0(t) = \exp(\int_0^t r(s)ds)$
- Forward rates: $df(t, T) = -\frac{d}{dt} \log B(t, T)$
- Forward rate dynamics:
 $df(t, T) = \alpha(t, T)dt + \sigma(t, T)dX(t)$,
 where $\sigma(t, T)$ deterministic,
 $X \mathbb{R}^d$-valued (time-inhomogeneous) affine process
 (under risk-neutral measure Q_0 for S_0)
- HJM drift condition:
 $A(t, T) = -\psi_0(t, -i\Sigma(t, T)) + \sum_{m=1}^d \psi_m(t, -i\Sigma(t, T))X_m(t-)$,
 for $A(t, T) := \int_t^T \alpha(t, s)ds$, $\Sigma(t, T) := \int_t^T \sigma(t, s)ds$,
 ψ_0, \ldots, ψ_d exponents corresponding to X
- Implied short rate dynamics:
 $dr(t) = (\alpha(t, t) + \partial_1 f(t, t))dt + \sigma(t, t)dX(t)$
HJM models
– based on affine processes (Heath, Jarrow, Morton 1992, etc.)

- Numeraire: money market account $S_0(t) = \exp(\int_0^t r(s)ds)$
- Forward rates: $df(t, T) = -\frac{d}{dT} \log B(t, T)$
- Forward rate dynamics:
 $df(t, T) = \alpha(t, T)dt + \sigma(t, T)dX(t)$,
 where $\sigma(t, T)$ deterministic,
 $X \mathbb{R}^d$-valued (time-inhomogeneous) affine process
 (under risk-neutral measure Q_0 for S_0)
- HJM drift condition:
 $A(t, T) = -\psi_0(t, -i\Sigma(t, T)) + \sum_{m=1}^d \psi_m(t, -i\Sigma(t, T))X_m(t-)$,
 for $A(t, T) := \int_t^T \alpha(t, s)ds$, $\Sigma(t, T) := \int_t^T \sigma(t, s)ds,$
 ψ_0, \ldots, ψ_d exponents corresponding to X
- Implied short rate dynamics:
 $dr(t) = (\alpha(t, t) + \partial_1 f(t, t))dt + \sigma(t, t)dX(t)$
HJM models
– based on affine processes (Heath, Jarrow, Morton 1992, etc.)

- Numeraire: money market account $S_0(t) = \exp(\int_0^t r(s)ds)$
- Forward rates: $df(t, T) = -\frac{d}{dT} \log B(t, T)$
- Forward rate dynamics:
 $df(t, T) = \alpha(t, T)dt + \sigma(t, T)dX(t)$,
 where $\sigma(t, T)$ deterministic,
 $X \mathbb{R}^d$-valued (time-inhomogeneous) affine process
 (under risk-neutral measure Q_0 for S_0)
- HJM drift condition:
 $A(t, T) = -\psi_0(t, -i\Sigma(t, T)) + \sum_{m=1}^d \psi_m(t, -i\Sigma(t, T))X_m(t-)$,
 for $A(t, T) := \int_t^T \alpha(t, s)ds$, $\Sigma(t, T) := \int_t^T \sigma(t, s)ds$,
 ψ_0, \ldots, ψ_d exponents corresponding to X
- Implied short rate dynamics:
 $dr(t) = (\alpha(t, t) + \partial_1 f(t, t))dt + \sigma(t, t)dX(t)$
HJM models
– based on affine processes (Heath, Jarrow, Morton 1992, etc.)

- Numeraire: money market account \(S_0(t) = \exp(\int_0^t r(s)ds) \)
- Forward rates: \(df(t, T) = -\frac{d}{dT} \log B(t, T) \)
- Forward rate dynamics:
 \(df(t, T) = \alpha(t, T)dt + \sigma(t, T)dX(t) \),
 where \(\sigma(t, T) \) deterministic,
 \(X \mathbb{R}^d \)-valued (time-inhomogeneous) affine process
 (under risk-neutral measure \(Q_0 \) for \(S_0 \))
- HJM drift condition:
 \(A(t, T) = -\psi_0(t, -i\Sigma(t, T)) + \sum_{m=1}^d \psi_m(t, -i\Sigma(t, T))X_m(t-) \),
 for \(A(t, T) := \int_t^T \alpha(t, s)ds, \ \Sigma(t, T) := \int_t^T \sigma(t, s)ds \),
 \(\psi_0, \ldots, \psi_d \) exponents corresponding to \(X \)
- Implied short rate dynamics:
 \(dr(t) = (\alpha(t, t) + \partial_1 f(t, t))dt + \sigma(t, t)dX(t) \)
HJM models
– based on affine processes (Heath, Jarrow, Morton 1992, etc.)

- Numeraire: money market account \(S_0(t) = \exp(\int_0^t r(s) ds) \)
- Forward rates: \(df(t, T) = -\frac{d}{dT} \log B(t, T) \)
- Forward rate dynamics:
 \[
 df(t, T) = \alpha(t, T) dt + \sigma(t, T) dX(t),
 \]
 where \(\sigma(t, T) \) deterministic,
 \(X \mathbb{R}^d \)-valued (time-inhomogeneous) affine process
 (under risk-neutral measure \(Q_0 \) for \(S_0 \))
- HJM drift condition:
 \[
 A(t, T) = -\psi_0(t, -i\Sigma(t, T)) + \sum_{m=1}^d \psi_m(t, -i\Sigma(t, T)) X_m(t-),
 \]
 for \(A(t, T) := \int_t^T \alpha(t, s) ds, \quad \Sigma(t, T) := \int_t^T \sigma(t, s) ds, \)
 \(\psi_0, \ldots, \psi_d \) exponents corresponding to \(X \)
- Implied short rate dynamics:
 \[
 dr(t) = (\alpha(t, t) + \partial_1 f(t, t)) dt + \sigma(t, t) dX(t)
 \]
HJM models
– based on affine processes, ct’d

- Bonds: state variables
- Bond options with time-T_0-payoff $H = (B(T_0, T_1) - K)^+$:
 value $\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_0, T_1}(t, z) \frac{K^{1-z}}{z(z-1)} dz$ with

 $\pi_{T_0, T_1}(t, z) = \exp\left(\psi_0(t, T_0, T_1, iz) + \psi_X(t, T_0, T_1, iz)^T X(t)\right) \frac{B(t, T_1)^z}{B(t, T_0)^{z-1}}$

- Swaptions:
 - suppose X univariate (time-inhomogeneous) Lévy,
 $\sigma(t, T) = \sigma_1(t)\sigma_2(T)$
 - then $B(T_0, T_1) = \pi(T_0, T_1, Y(T_0))$ with
 $Y(t) := \int_0^t \sigma_2(s) dX(s), \quad \Sigma_1(t, T) := \int_t^T \sigma_1(s) ds,$
 $\pi(T_0, T_1, x) := \frac{B(0, T_1)}{B(0, T_0)} \exp\left(\int_0^{T_0} (A(s, T_1) - A(s, T_0)) dt\right) e^{\Sigma_1(T_0, T_1)x}$
 - apply Jamshidian’s representation
HJM models
– based on affine processes, ct’d

- Bonds: state variables

Bond options with time-T_0-payoff $H = (B(T_0, T_1) - K)^+$:

value $\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_0,T_1}(t, z) \frac{K^{1-z}}{z(z-1)} dz$ with

$$
\pi_{T_0,T_1}(t, z) = \exp\left(\psi_0(t, T_0, T_1, iz) + \psi_X(t, T_0, T_1, iz)^T X(t)\right) \frac{B(t, T_1)^z}{B(t, T_0)^{z-1}}
$$

- Swaptions:

▶ suppose X univariate (time-inhomogeneous) Lévy,

$$
\sigma(t, T) = \sigma_1(t)\sigma_2(T)
$$

▶ then $B(T_0, T_1) = \pi(T_0, T_1, Y(T_0))$ with

$$
Y(t) := \int_0^t \sigma_2(s)dX(s), \quad \Sigma_1(t, T) := \int_t^T \sigma_1(s)ds,
$$

$$
\pi(T_0, T_1, x) := \frac{B(0,T_1)}{B(0,T_0)} \exp\left(\int_0^{T_0} (A(s, T_1) - A(s, T_0)) dt\right) e^{\Sigma_1(T_0,T_1)x}
$$

▶ apply Jamshidian’s representation
HJM models
– based on affine processes, ct’d

- Bonds: state variables
- Bond options with time-T_0-payoff $H = (B(T_0, T_1) - K)^+$:
 value $\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_0, T_1}(t, z) \frac{K^{1-z}}{z(z-1)} \, dz$ with

 $\pi_{T_0, T_1}(t, z) = \exp(\psi_0(t, T_0, T_1, iz) + \Psi_X(t, T_0, T_1, iz)^\top X(t)) \frac{B(t, T_1)^z}{B(t, T_0)^{z-1}}$

- Swaptions:
 - suppose X univariate (time-inhomogeneous) Lévy, $\sigma(t, T) = \sigma_1(t)\sigma_2(T)$
 - then $B(T_0, T_1) = \pi(T_0, T_1, Y(T_0))$ with
 $Y(t) := \int_0^t \sigma_2(s) \, dX(s), \quad \Sigma_1(t, T) := \int_t^T \sigma_1(s) \, ds$
 $\pi(T_0, T_1, x) := \frac{B(0, T_1)}{B(0, T_0)} \exp(\int_0^{T_0} (A(s, T_1) - A(s, T_0)) \, dt) \, e^{\Sigma_1(T_0, T_1)x}$
 - apply Jamshidian’s representation
HJM models
– based on affine processes, ct’d

- Bonds: state variables

- Bond options with time-\(T_0 \)-payoff \(H = (B(T_0, T_1) - K)^+ \):

 value \(\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_0, T_1}(t, z) \frac{K^{1-z}}{z(z-1)} \, dz \) with

 \[
 \pi_{T_0, T_1}(t, z) = \exp \left(\psi_0(t, T_0, T_1, iz) + \psi_X(t, T_0, T_1, iz)^T X(t) \right) \frac{B(t, T_1)^z}{B(t, T_0)^{z-1}}
 \]

- Swaptions:
 - Suppose \(X \) univariate (time-inhomogeneous) Lévy,
 \(\sigma(t, T) = \sigma_1(t) \sigma_2(T) \)
 - Then \(B(T_0, T_1) = \pi(T_0, T_1, Y(T_0)) \) with
 \[
 Y(t) := \int_0^t \sigma_2(s) \, dX(s), \quad \Sigma_1(t, T) := \int_t^T \sigma_1(s) \, ds,
 \]
 \[
 \pi(T_0, T_1, x) := \frac{B(0, T_1)}{B(0, T_0)} \exp \left(\int_0^{T_0} (A(s, T_1) - A(s, T_0)) \, dt \right) e^{\Sigma_1(T_0, T_1)x}
 \]
 - Apply Jamshidian’s representation
HJM models
– based on affine processes, ct’d

- Bonds: state variables
- Bond options with time-T_0-payoff $H = (B(T_0, T_1) - K)^+$:
 value $\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_0,T_1}(t,z) \frac{K^{1-z}}{z(z-1)} \, dz$ with

$$
\pi_{T_0,T_1}(t,z) = \exp\left(\psi_0(t, T_0, T_1, iz) + \psi_X(t, T_0, T_1, iz)^\top X(t)\right) \frac{B(t, T_1)^z}{B(t, T_0)^{z-1}}
$$

- Swaptions:
 - suppose X univariate (time-inhomogeneous) Lévy,
 $\sigma(t, T) = \sigma_1(t)\sigma_2(T)$
 - then $B(T_0, T_1) = \pi(T_0, T_1, Y(T_0))$ with
 $Y(t) := \int_0^t \sigma_2(s) dX(s), \quad \Sigma_1(t, T) := \int_t^T \sigma_1(s) ds,$
 $\pi(T_0, T_1, x) := \frac{B(0,T_1)}{B(0,T_0)} \exp\left(\int_0^{T_0} (A(s, T_1) - A(s, T_0)) \, dt\right) e^{\Sigma_1(T_0,T_1)x}$
 - apply Jamshidian’s representation
HJM models
– based on affine processes, ct’d

- Bonds: state variables
- Bond options with time-T_0-payoff $H = (B(T_0, T_1) - K)^+$:
 value $\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_0, T_1}(t, z) \frac{K^{1-z}}{z(z-1)} dz$ with

 $\pi_{T_0, T_1}(t, z) = \exp \left(\psi_0(t, T_0, T_1, iz) + \psi_X(t, T_0, T_1, iz)^\top X(t) \right) \frac{B(t, T_1)^z}{B(t, T_0)^{z-1}}$

- Swaptions:
 - suppose X univariate (time-inhomogeneous) Lévy,
 $\sigma(t, T) = \sigma_1(t)\sigma_2(T)$
 - then $B(T_0, T_1) = \pi(T_0, T_1, Y(T_0))$ with
 $Y(t) := \int_0^t \sigma_2(s) dX(s), \quad \Sigma_1(t, T) := \int_t^T \sigma_1(s) ds$,
 $\pi(T_0, T_1, x) := \frac{B(0, T_1)}{B(0, T_0)} \exp \left(\int_0^{T_0} (A(s, T_1) - A(s, T_0)) dt \right) e^{\Sigma_1(T_0, T_1)x}$
 - apply Jamshidian’s representation
HJM models

– based on affine processes, ct’d

- Bonds: state variables

- Bond options with time-T_0-payoff $H = (B(T_0, T_1) - K)^+$:
 value $\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_0, T_1}(t, z) \frac{K^{1-z}}{z(z-1)} dz$ with

$\pi_{T_0, T_1}(t, z) = \exp\left(\psi_0(t, T_0, T_1, iz) + \psi_X(t, T_0, T_1, iz)^\top X(t)\right) \frac{B(t, T_1)^z}{B(t, T_0)^{z-1}}$

- Swaptions:
 - suppose X univariate (time-inhomogeneous) Lévy,
 $\sigma(t, T) = \sigma_1(t)\sigma_2(T)$
 - then $B(T_0, T_1) = \pi(T_0, T_1, Y(T_0))$ with
 $Y(t) := \int_0^t \sigma_2(s) dX(s), \quad \Sigma_1(t, T) := \int_t^T \sigma_1(s) ds,$
 $\pi(T_0, T_1, x) := \frac{B(0, T_1)}{B(0, T_0)} \exp\left(\int_0^{T_0} (A(s, T_1) - A(s, T_0)) dt\right) e^{\Sigma_1(T_0, T_1)x}$
 - apply Jamshidian’s representation
Exponential-rational models
– based on affine processes (Flesaker, Hughston 1996, Rogers 1997, etc.)

- No risk neutral measure for specific numeriare: use state price density process Z instead, i.e. SZ martingale for any liquid S
- Model for state price density process Z:
 $$Z(t) = a(t) + b(t)e^{X_d(t)},$$
 where X some \mathbb{R}^d-valued (time-inhomogeneous) affine process such that $e^{X_d(t)}$ martingale,
 a, b increasing deterministic functions
- Implied short rate:
 $$r(t) = \frac{a'(t) + b'(t)e^{X_d(t)}}{a(t) + b(t)e^{X_d(t)}}$$
- Bonds:
 $$B(t, T) = \frac{a(T) + b(T)e^{X_d(t)}}{a(t) + b(t)e^{X_d(t)}}$$
Exponential-rational models
– based on affine processes (Flesaker, Hughston 1996, Rogers 1997, etc.)

- No risk neutral measure for specific numeriare: use state price density process Z instead, i.e. SZ martingale for any liquid S

- Model for state price density process Z:

 $$Z(t) = a(t) + b(t)e^{X_d(t)},$$

 where X some \mathbb{R}^d-valued (time-inhomogeneous) affine process such that $e^{X_d(t)}$ martingale,

 a, b increasing deterministic functions

- Implied short rate:

 $$r(t) = \frac{a'(t)+b'(t)e^{X_d(t)}}{a(t)+b(t)e^{X_d(t)}}$$

- Bonds:

 $$B(t, T) = \frac{a(T)+b(T)e^{X_d(t)}}{a(t)+b(t)e^{X_d(t)}}$$
Exponential-rational models
– based on affine processes (Flesaker, Hughston 1996, Rogers 1997, etc.)

- No risk neutral measure for specific numeriare: use state price density process Z instead, i.e. SZ martingale for any liquid S
- Model for state price density process Z:
 $$Z(t) = a(t) + b(t)e^{X_d(t)},$$
 where X some \mathbb{R}^d-valued (time-inhomogeneous) affine process such that $e^{X_d(t)}$ martingale,
 a, b increasing deterministic functions

- Implied short rate: $r(t) = \frac{a'(t)+b'(t)e^{X_d(t)}}{a(t)+b(t)e^{X_d(t)}}$

- Bonds: $B(t, T) = \frac{a(T)+b(T)e^{X_d(t)}}{a(t)+b(t)e^{X_d(t)}}$
Exponential-rational models
– based on affine processes (Flesaker, Hughston 1996, Rogers 1997, etc.)

- No risk neutral measure for specific numeriare: use state price density process \(Z \) instead, i.e. \(SZ \) martingale for any liquid \(S \)
- Model for state price density process \(Z \):
 \[
 Z(t) = a(t) + b(t)e^{X_d(t)},
 \]
 where \(X \) some \(\mathbb{R}^d \)-valued (time-inhomogeneous) affine process such that \(e^{X_d(t)} \) martingale,
 \(a, b \) increasing deterministic functions
- Implied short rate:
 \[
 r(t) = \frac{a'(t)+b'(t)e^{X_d(t)}}{a(t)+b(t)e^{X_d(t)}}
 \]
- Bonds:
 \[
 B(t, T) = \frac{a(T)+b(T)e^{X_d(t)}}{a(t)+b(t)e^{X_d(t)}}
 \]
Exponential-rational models
– based on affine processes (Flesaker, Hughston 1996, Rogers 1997, etc.)

- No risk neutral measure for specific numeriare: use state price density process \(Z \) instead, i.e. \(SZ \) martingale for any liquid \(S \)

- Model for state price density process \(Z \):
 \[
 Z(t) = a(t) + b(t) e^{X_d(t)},
 \]
 where \(X \) some \(\mathbb{R}^d \)-valued (time-inhomogeneous) affine process such that \(e^{X_d(t)} \) martingale,
 \(a, b \) increasing deterministic functions

- Implied short rate: \(r(t) = \frac{a'(t)+b'(t)e^{X_d(t)}}{a(t)+b(t)e^{X_d(t)}} \)

- Bonds: \(B(t, T) = \frac{a(T)+b(T)e^{X_d(t)}}{a(t)+b(t)e^{X_d(t)}} \)
Exponential-rational models
– based on affine processes, ct’d

Bond options and swaptions (without Jamshidian’s trick): consider time-T_0-payoff $H = (K - \sum_{n=1}^{N} c_n B(T_0, T_n))^+$:

value $\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi(t, z) \frac{e^{zX_d(t)} \tilde{K}^{1-z}}{z(z-1)} \, dz \frac{\sum_{n=1}^{N} c_n b(T_n) - Kb(T_0)}{a(t)+b(t)e^{X_d(t)}}$,

where

$\pi(t, z) := \exp(\psi_0(t, T_0 - t, -iz) + \psi_X(t, T_0 - t, -iz)^{\top} X(t))$,

$\tilde{K} := \frac{Ka(T_0) - \sum_{n=1}^{N} c_n a(T_n)}{\sum_{n=1}^{N} c_n b(T_n) - Kb(T_0)}$,

$E(\exp(iu^{\top} X_d(s + t))|\mathcal{F}_s)$

$= \exp(\psi_0(s, t, u) + \psi_X(s, t, u)^{\top} X(s) + iuX_d(s))$
Linear-rational models
– based on affine processes (Rogers 1997, Filipović, Larsson, Trolle 2017, etc.)

- No risk neutral measure for specific numeriare: use state price density process Z instead, i.e. SZ martingale for any liquid S

- Model for state price density process Z:
 \[Z(t) = e^{-\alpha t}(\varphi + X_d(t)), \]
 where X some \mathbb{R}^d-valued (time-inhomogeneous) affine process such that
 \[dX(t) = (\beta^{(0)} + \beta X(t))dt + \text{martingale} \]
 with some $\alpha, \varphi \in \mathbb{R}$, $\beta^{(0)} \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^{d \times d}$

- Implied short rate:
 \[r(t) = \frac{(\beta^{(0)} + \beta X(t))d}{\varphi + X_d(t)} \]

- Bonds:
 \[B(t, T) = e^{-\alpha(T-t)} \cdot \frac{e^{\beta(T-t)} \int_0^{T-t} e^{-\beta s} \beta^{(0)} ds + e^{\beta(T-t)} X(t)}{\varphi + X_d(t)} \]
Linear-rational models
– based on affine processes (Rogers 1997, Filipović, Larsson, Trolle 2017, etc.)

- No risk neutral measure for specific numeriare: use state price density process Z instead, i.e. SZ martingale for any liquid S

- Model for state price density process Z:
 \[Z(t) = e^{-\alpha t}(\varphi + X_d(t)), \]
 where X some \mathbb{R}^d-valued (time-inhomogeneous) affine process such that
 \[dX(t) = (\beta^{(0)} + \beta X(t)) \, dt + \text{martingale} \]
 with some $\alpha, \varphi \in \mathbb{R}$, $\beta^{(0)} \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^{d \times d}$

- Implied short rate: \[r(t) = \frac{(\beta^{(0)} + \beta X(t))_d}{\varphi + X_d(t)} \]

- Bonds: \[B(t, T) = e^{-\alpha(T-t)} \frac{\varphi + \left(e^{\beta(T-t)} \int_0^{T-t} e^{-\beta s} \beta^{(0)} \, ds + e^{\beta(T-t)} X(t) \right)_d}{\varphi + X_d(t)} \]
Linear-rational models
– based on affine processes (Rogers 1997, Filipović, Larsson, Trolle 2017, etc.)

- No risk neutral measure for specific numeriare: use state price density process Z instead, i.e. SZ martingale for any liquid S
- Model for state price density process Z:
 \[Z(t) = e^{-\alpha t}(\varphi + X_d(t)), \]
 where X some \mathbb{R}^d-valued (time-inhomogeneous) affine process such that $dX(t) = (\beta^{(0)} + \beta X(t))dt + \text{martingale}$
 with some $\alpha, \varphi \in \mathbb{R}$, $\beta^{(0)} \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^{d \times d}$
- Implied short rate:
 \[r(t) = \frac{(\beta^{(0)} + \beta X(t))d}{\varphi + X_d(t)} \]
- Bonds:
 \[B(t, T) = e^{-\alpha(T-t)} \frac{\varphi + \left(e^{\beta(T-t)} \int_0^{T-t} e^{-\beta s} \beta^{(0)} ds + e^{\beta(T-t)} X(t) \right)_d}{\varphi + X_d(t)} \]
Linear-rational models
– based on affine processes (Rogers 1997, Filipović, Larsson, Trolle 2017, etc.)

- No risk neutral measure for specific numeriare: use state price density process Z instead, i.e. SZ martingale for any liquid S

- Model for state price density process Z:
 \[Z(t) = e^{-\alpha t}(\varphi + X_d(t)), \]
 where X some \mathbb{R}^d-valued (time-inhomogeneous) affine process such that
 \[dX(t) = (\beta^{(0)} + \beta X(t))dt + \text{martingale} \]
 with some $\alpha, \varphi \in \mathbb{R}$, $\beta^{(0)} \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^{d\times d}$

- Implied short rate: $r(t) = \frac{(\beta^{(0)} + \beta X(t))_d}{\varphi + X_d(t)}$

- Bonds: $B(t, T) = e^{-\alpha(T-t)}\frac{\varphi + e^{\beta(T-t)} \int_0^{T-t} e^{-\beta s} \beta^{(0)} ds + e^{\beta(T-t)} X(t)}{\varphi + X_d(t)}$
Linear-rational models
– based on affine processes (Rogers 1997, Filipović, Larsson, Trolle 2017, etc.)

- No risk neutral measure for specific numeriare: use state price density process Z instead, i.e. SZ martingale for any liquid S

- Model for state price density process Z:
 $Z(t) = e^{-\alpha t}(\varphi + X_d(t))$
 where X some \mathbb{R}^d-valued (time-inhomogeneous) affine process such that $dX(t) = (\beta^{(0)} + \beta X(t))dt + \text{martingale}$
 with some $\alpha, \varphi \in \mathbb{R}, \beta^{(0)} \in \mathbb{R}^d$ and $\beta \in \mathbb{R}^{d \times d}$

- Implied short rate: $r(t) = \frac{(\beta^{(0)} + \beta X(t))_d}{\varphi + X_d(t)}$

- Bonds: $B(t, T) = e^{-\alpha(T-t)} \frac{\varphi + \left(e^{\beta(T-t)} \int_0^{T-t} e^{-\beta s} \beta^{(0)} ds + e^{\beta(T-t)} X(t) \right)_d}{\varphi + X_d(t)}$
Bond options and swaptions (without Jamshidian’s trick):
consider time-T_0-payoff $H = (K - \sum_{n=1}^{N} c_n B(T_0, T_n))^+$:
value $\pi(t) = \frac{1}{2\pi i Z(t)} \int_{R-i\infty}^{R+i\infty} \pi(t, zu) \frac{e^{-z\tilde{K}}}{z^2} dz$, where
$\pi(t, z) := \exp \left(\psi_0(t, T_0 - t, -iz) + \psi_X(t, T_0 - t, -iz)^\top X(t) \right)$,
$u := \left(\sum_{n=1}^{N} c_n e^{-\alpha T_n} (e^{\beta(T_n-T_0)})_{dj} \right)_{j=1,...,d}$,
$\tilde{K} := K\varphi - \sum_{n=1}^{N} c_n e^{-\alpha T_n} (\varphi + (e^{\beta(T_n-T_0)} \int_{T_n-T_0}^{T_n-T_0} e^{-\beta s} \beta(0) ds)_{d})$,

$$E(\exp(iu^\top X_d(s + t))|\mathcal{F}_s) = \exp(\psi_0(s, t, u) + \psi_X(s, t, u)^\top X(s) + iuX_d(s))$$
Outline

1. Interest rate models
2. Affine processes and integration
3. Affine models: factor, HJM, exponential-rational, linear-rational
4. LIBOR models: the classical (or lognormal) point of view
5. LIBOR models: the forward process (or affine) point of view
Classical LIBOR modelling
lognormal case and Lévy extension (Brace, Gątarek, Musiela 1997, Miltersen, Sandmann, Sondermann 1997, Eberlein, Özkan 2005, etc.)

- Numeriare: T_n-bond, $n = 1, 2, \ldots$
- LIBOR rates: $L(t, S, T) := \frac{B(t, S) - B(t, T)}{B(t, T)(T - S)}$
- LIBOR dynamics:
 \[dL(t, T_{n-1}, T_n) = L(t, T_{n-1}, T_n)\sigma_i(t)dW(t), \]
 $\sigma(t)$ deterministic function,
 W Wiener process under risk-neutral measure Q_n for $B(\cdot, T_n)$
- Short rate: not specified
- Bonds: state variables
- Caplets with time-T_n-payoff: $H = (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T$:
 value $\pi(t) = B(t, T_n)E_{Q_n}((L(T_{n-1}, T_{n-1}, T_n) - \ell)^+|\mathcal{F}_t) \Delta T$,
 obtain Black formula
- Swaptions: no nice formula (need another LIBOR model)
- Extension: take Lévy instead of Wiener process,
 computation of $\pi(t)$ via integral representation
Classical LIBOR modelling
lognormal case and Lévy extension (Brace, Gątarek, Musiela 1997, Miltersen, Sandmann, Sondermann 1997, Eberlein, Özkan 2005, etc.)

- **Numeriare:** \(T_n \)-bond, \(n = 1, 2, \ldots \)
- **LIBOR rates:** \(L(t, S, T) := \frac{B(t, S) - B(t, T)}{B(t, T)(T - S)} \)
- **LIBOR dynamics:**
 \[dL(t, T_{n-1}, T_n) = L(t, T_{n-1}, T_n)\sigma_i(t) dW(t), \]
 \(\sigma(t) \) deterministic function,
 \(W \) Wiener process under risk-neutral measure \(Q_n \) for \(B(\cdot, T_n) \)
- **Short rate:** not specified
- **Bonds:** state variables
- **Caplets with time-\(T_n \)-payoff:** \(H = (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T \):
 value \(\pi(t) = B(t, T_n)E_{Q_n}((L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ | \mathcal{F}_t) \Delta T \),
 obtain Black formula
- **Swaptions:** no nice formula (need another LIBOR model)
- **Extension:** take Lévy instead of Wiener process,
 computation of \(\pi(t) \) via integral representation
Classical LIBOR modelling
lognormal case and Lévy extension (Brace, Gątarek, Musiela 1997, Miltersen, Sandmann, Sondermann 1997, Eberlein, Özkan 2005, etc.)

- Numeriare: T_n-bond, $n = 1, 2, \ldots$
- LIBOR rates: $L(t, S, T) := \frac{B(t, S) - B(t, T)}{B(t, T)(T - S)}$
- LIBOR dynamics:
 $dL(t, T_{n-1}, T_n) = L(t, T_{n-1}, T_n)\sigma_i(t)dW(t)$,
 $\sigma(t)$ deterministic function,
 W Wiener process under risk-neutral measure Q_n for $B(\cdot, T_n)$
- Short rate: not specified
- Bonds: state variables
- Caplets with time-T_n-payoff: $H = (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+\Delta T$:
 value $\pi(t) = B(t, T_n)E_{Q_n}((L(T_{n-1}, T_{n-1}, T_n) - \ell)^+|\mathcal{F}_t)\Delta T$,
 obtain Black formula
- Swaptions: no nice formula (need another LIBOR model)
- Extension: take Lévy instead of Wiener process,
 computation of $\pi(t)$ via integral representation
Classical LIBOR modelling

lognormal case and Lévy extension (Brace, Gâtarek, Musiela 1997, Miltersen, Sandmann, Sondermann 1997, Eberlein, Özkan 2005, etc.)

- Numeriare: \(T_n \)-bond, \(n = 1, 2, \ldots \)
- LIBOR rates: \(L(t, S, T) := \frac{B(t,S) - B(t,T)}{B(t,T)(T-S)} \)
- LIBOR dynamics:
 \[dL(t, T_{n-1}, T_n) = L(t, T_{n-1}, T_n)\sigma_i(t)dW(t), \]
 \(\sigma(t) \) deterministic function,
 \(W \) Wiener process under risk-neutral measure \(Q_n \) for \(B(\cdot, T_n) \)
- Short rate: not specified
- Bonds: state variables
- Caplets with time-\(T_n \)-payoff: \(H = (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T: \)
 value \(\pi(t) = B(t, T_n)E_{Q_n}((L(T_{n-1}, T_{n-1}, T_n) - \ell)^+|\mathcal{F}_t) \Delta T, \)
 obtain Black formula
- Swaptions: no nice formula (need another LIBOR model)
- Extension: take Lévy instead of Wiener process, computation of \(\pi(t) \) via integral representation
Classical LIBOR modelling
lognormal case and Lévy extension (Brace, Gătarek, Musiela 1997,
Miltersen, Sandmann, Sondermann 1997, Eberlein, Özkan 2005, etc.)

- Numeriare: T_n-bond, $n = 1, 2, \ldots$
- LIBOR rates: $L(t, S, T) := \frac{B(t, S) - B(t, T)}{B(t, T)(T - S)}$
- LIBOR dynamics:
 \[dL(t, T_{n-1}, T_n) = L(t, T_{n-1}, T_n)\sigma_i(t)dW(t),\]
 $\sigma(t)$ deterministic function,
 W Wiener process under risk-neutral measure Q_n for $B(\cdot, T_n)$
- Short rate: not specified
- Bonds: state variables
- Caplets with time-T_n-payoff: $H = (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+\Delta T$:
 value $\pi(t) = B(t, T_n)E_{Q_n}((L(T_{n-1}, T_{n-1}, T_n) - \ell)^+|\mathcal{F}_t)\Delta T$,
 obtain Black formula
- Swaptions: no nice formula (need another LIBOR model)
- Extension: take Lévy instead of Wiener process,
 computation of $\pi(t)$ via integral representation
Classical LIBOR modelling

lognormal case and Lévy extension (Brace, Gątarek, Musiela 1997, Miltersen, Sandmann, Sondermann 1997, Eberlein, Özkan 2005, etc.)

- Numeriare: T_n-bond, $n = 1, 2, \ldots$
- LIBOR rates: $L(t, S, T) := \frac{B(t, S) - B(t, T)}{B(t, T)(T - S)}$
- LIBOR dynamics:
 \[dL(t, T_{n-1}, T_n) = L(t, T_{n-1}, T_n)\sigma_i(t)dt, \]
 where $\sigma(t)$ is a deterministic function,
 W is a Wiener process under risk-neutral measure Q_n for $B(\cdot, T_n)$
- Short rate: not specified
- Bonds: state variables
 - Caplets with time-T_n-payoff: $H = (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T$:
 value $\pi(t) = B(t, T_n)E_{Q_n}((L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ | \mathcal{F}_t) \Delta T$;
 obtain Black formula
 - Swaptions: no nice formula (need another LIBOR model)
 - Extension: take Lévy instead of Wiener process,
 computation of $\pi(t)$ via integral representation
Classical LIBOR modelling
lognormal case and Lévy extension (Brace, Gătarek, Musiela 1997, Miltersen, Sandmann, Sondermann 1997, Eberlein, Özkan 2005, etc.)

- Numeriare: T_n-bond, $n = 1, 2, \ldots$
- LIBOR rates: $L(t, S, T) := \frac{B(t, S) - B(t, T)}{B(t, T)(T - S)}$
- LIBOR dynamics:
 $$dL(t, T_{n-1}, T_n) = L(t, T_{n-1}, T_n)\sigma_i(t)dW(t),$$
 $\sigma(t)$ deterministic function,
 W Wiener process under risk-neutral measure Q_n for $B(\cdot, T_n)$
- Short rate: not specified
- Bonds: state variables
- Caplets with time-T_n-payoff: $H = (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T$:
 value $\pi(t) = B(t, T_n)E_{Q_n}((L(T_{n-1}, T_{n-1}, T_n) - \ell)^+|\mathcal{F}_t)\Delta T$, obtain Black formula
- Swaptions: no nice formula (need another LIBOR model)
- Extension: take Lévy instead of Wiener process, computation of $\pi(t)$ via integral representation
Classical LIBOR modelling

lognormal case and Lévy extension (Brace, Gątarek, Musiela 1997, Miltersen, Sandmann, Sondermann 1997, Eberlein, Özkan 2005, etc.)

- Numeriare: \(T_n \)-bond, \(n = 1, 2, \ldots \)
- LIBOR rates: \(L(t, S, T) := \frac{B(t, S) - B(t, T)}{B(t, T)(T - S)} \)
- LIBOR dynamics:
 \[
 dL(t, T_{n-1}, T_n) = L(t, T_{n-1}, T_n) \sigma_i(t) dW(t),
 \]
 \(\sigma(t) \) deterministic function,
 \(W \) Wiener process under risk-neutral measure \(Q_n \) for \(B(\cdot, T_n) \)
- Short rate: not specified
- Bonds: state variables
- Caplets with time-\(T_n \)-payoff: \(H = (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T \):
 value \(\pi(t) = B(t, T_n) E_{Q_n}((L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ | F_t) \Delta T \),
 obtain Black formula
- Swaptions: no nice formula (need another LIBOR model)
- Extension: take Lévy instead of Wiener process,
 computation of \(\pi(t) \) via integral representation
Classical LIBOR modelling

d$lognormal case and Lévy extension (Brace, Gątarek, Musiela 1997, Miltersen, Sandmann, Sondermann 1997, Eberlein, Özkan 2005, etc.)$

- Numeriare: T_n-bond, $n = 1, 2, \ldots$
- LIBOR rates: $L(t, S, T) := \frac{B(t, S) - B(t, T)}{B(t, T)(T - S)}$
- LIBOR dynamics:
 \[dL(t, T_{n-1}, T_n) = L(t, T_{n-1}, T_n)\sigma_i(t)dW(t), \]
 \[\sigma(t) \text{ deterministic function,} \]
 \[W \text{ Wiener process under risk-neutral measure } Q_n \text{ for } B(\cdot, T_n) \]
- Short rate: not specified
- Bonds: state variables
- Caplets with time-T_n-payoff: $H = (L(T_{n-1}, T_{n-1}, T_n) - \ell)^+ \Delta T$:
 \[\text{value } \pi(t) = B(t, T_n)E_{Q_n}((L(T_{n-1}, T_{n-1}, T_n) - \ell)^+|\mathcal{F}_t)\Delta T, \]
 obtain Black formula
- Swaptions: no nice formula (need another LIBOR model)
- Extension: take Lévy instead of Wiener process, computation of $\pi(t)$ via integral representation
Outline

1. Interest rate models
2. Affine processes and integration
3. Affine models: factor, HJM, exponential-rational, linear-rational
4. LIBOR models: the classical (or lognormal) point of view
5. LIBOR models: the forward process (or affine) point of view
Forward process models
– based on affine processes (Eberlein, Özkan 2005, etc.)

- Contin. comp. forward rate: \(f(t, S, T) := \frac{1}{T-S} \log \frac{B(t, S)}{B(t, T)} \)
- Numeraire: discrete money market account
\[
\tilde{S}_0(t) = \exp \left(- \sum_{m=1}^n f(T_{m-1}, T_{m-1}, T_m)(T_m - T_{m-1}) \right.
- \left. \tilde{f}(t, t, T_n)(T_n - t) \right) \quad \text{for } T_{n-1} \leq t < T_n
\]

- Forward process dynamics:
\[df(t, T_{n-1}, T_n) = \alpha_n(t)dt + \sigma_n(t)dX(t), \]
where \(\sigma_n\) deterministic,
\(X \in \mathbb{R}^d\)-valued (time-inhomogeneous) affine process
(under risk-neutral measure \(\tilde{Q}_0\) for \(\tilde{S}_0\))
- Forward process drift condition:
\[
A_n(t) = \psi_0(t, -i\Sigma_n(t)) + \sum_{m=1}^d \psi_m(t, -i\Sigma_n(t))X_m(t) \quad \text{for } A_n(t) := \sum_{m=n(t)+1}^n (T_m - T_{m-1})\alpha_m(t),
\Sigma_n(t) := \sum_{m=n(t)+1}^n (T_m - T_{m-1})\sigma_m(t), \quad T_{n(t)-1} \leq t < T_{n(t)},
\psi_0, \ldots, \psi_d \) exponents corresponding to \(X\)
- Discrete short rate dynamics: is not fully determined by model
Forward process models
– based on affine processes (Eberlein, Özkan 2005, etc.)

- Contin. comp. forward rate: \(f(t, S, T) := \frac{1}{T-S} \log \frac{B(t,S)}{B(t,T)} \)
- Numeraire: discrete money market account
 \[
 \tilde{S}_0(t) = \exp \left(- \sum_{m=1}^{n} f(T_{m-1}, T_{m-1}, T_m)(T_m - T_{m-1}) \right. \\
 \left. - f(t, t, T_n)(T_n - t) \right) \quad \text{for } T_{n-1} \leq t < T_n
 \]
- Forward process dynamics:
 \[
df(t, T_{n-1}, T_n) = \alpha_n(t)dt + \sigma_n(t)dX(t),
 \]
 where \(\sigma_n \) deterministic,
 \(X \mathbb{R}^d \)-valued (time-inhomogeneous) affine process
 (under risk-neutral measure \(\tilde{Q}_0 \) for \(\tilde{S}_0 \))
- Forward process drift condition:
 \[
 A_n(t) = \psi_0(t, -i\Sigma_n(t)) + \sum_{m=1}^{d} \psi_m(t, -i\Sigma_n(t))X_m(t) \quad \text{for } A_n(t) := \sum_{m=n(t)+1}^{n} (T_m - T_{m-1})\alpha_m(t),
 \]
 \[
 \Sigma_n(t) := \sum_{m=n(t)+1}^{n}(T_m - T_{m-1})\sigma_m(t), \quad T_{n(t)-1} \leq t < T_{n(t)},
 \]
 \(\psi_0, \ldots, \psi_d \) exponents corresponding to \(X \)
- Discrete short rate dynamics: is not fully determined by model
Forward process models
– based on affine processes (Eberlein, Özkan 2005, etc.)

- Contin. comp. forward rate: \(f(t, S, T) := \frac{1}{T-S} \log \frac{B(t,S)}{B(t,T)} \)
- Numeraire: discrete money market account

\[
\tilde{S}_0(t) = \exp \left(- \sum_{m=1}^{n} f(T_{m-1}, T_{m-1}, T_{m})(T_{m} - T_{m-1}) - \tilde{f}(t, t, T_{n})(T_{n} - t) \right) \quad \text{for} \quad T_{n-1} \leq t < T_{n}
\]

- Forward process dynamics:
 \(df(t, T_{n-1}, T_{n}) = \alpha_n(t)dt + \sigma_n(t)dX(t) \),
 where \(\sigma_n \) deterministic,
 \(X \in \mathbb{R}^d \)-valued (time-inhomogeneous) affine process
 (under risk-neutral measure \(\tilde{Q}_0 \) for \(\tilde{S}_0 \))
- Forward process drift condition:
 \(A_n(t) = \psi_0(t, -i\Sigma_n(t)) + \sum_{m=1}^{d} \psi_m(t, -i\Sigma_n(t))X_m(t) \) for
 \(A_n(t) := \sum_{m=n(t)+1}^{n} (T_m - T_{m-1})\alpha_m(t) \),
 \(\Sigma_n(t) := \sum_{m=n(t)+1}^{n} (T_m - T_{m-1})\sigma_m(t) \), \(T_{n(t)-1} \leq t < T_{n(t)} \),
 \(\psi_0, \ldots, \psi_d \) exponents corresponding to \(X \)
- Discrete short rate dynamics: is not fully determined by model
Forward process models
– based on affine processes (Eberlein, Özkan 2005, etc.)

- Contin. comp. forward rate: \(f(t, S, T) := \frac{1}{T-S} \log \frac{B(t,S)}{B(t,T)} \)
- Numeraire: discrete money market account

\[
\tilde{S}_0(t) = \exp \left(- \sum_{m=1}^{n} f(T_{m-1}, T_{m-1}, T_m)(T_m - T_{m-1}) \right. \\
- \left. \tilde{f}(t, t, T_n)(T_n - t) \right) \text{ for } T_{n-1} \leq t < T_n
\]

- Forward process dynamics:
 \[
df(t, T_{n-1}, T_n) = \alpha_n(t)dt + \sigma_n(t)dX(t),
\]
 where \(\sigma_n \) deterministic,
 \(X \in \mathbb{R}^d \)-valued (time-inhomogeneous) affine process
 (under risk-neutral measure \(\tilde{Q}_0 \) for \(\tilde{S}_0 \))

- Forward process drift condition:
 \[
 A_n(t) = \psi_0(t, -i\Sigma_n(t)) + \sum_{m=1}^{d} \psi_m(t, -i\Sigma_n(t))X_m(t)
 \]
 \[
 A_n(t) := \sum_{m=n(t)+1}^{n} (T_m - T_{m-1})\alpha_m(t),
 \]
 \[
 \Sigma_n(t) := \sum_{m=n(t)+1}^{n} (T_m - T_{m-1})\sigma_m(t), \quad T_{n(t)-1} \leq t < T_{n(t)},
 \]
 \(\psi_0, \ldots, \psi_d \) exponents corresponding to \(X \)

- Discrete short rate dynamics: is not fully determined by model
Forward process models

– based on affine processes (Eberlein, Özkan 2005, etc.)

- Contin. comp. forward rate: \(f(t, S, T) := \frac{1}{T-S} \log \frac{B(t,S)}{B(t,T)} \)
- Numeraire: discrete money market account

\[
\tilde{S}_0(t) = \exp \left(- \sum_{m=1}^n f(T_{m-1}, T_{m-1}, T_m)(T_m - T_{m-1})
- \tilde{f}(t, t, T_n)(T_n - t) \right) \quad \text{for } T_{n-1} \leq t < T_n
\]

- Forward process dynamics:
 \(df(t, T_{n-1}, T_n) = \alpha_n(t)dt + \sigma_n(t)dX(t) \)
 where \(\sigma_n \) deterministic,
 \(X \mathbb{R}^d \)-valued (time-inhomogeneous) affine process
 (under risk-neutral measure \(\tilde{Q}_0 \) for \(\tilde{S}_0 \))

- Forward process drift condition:
 \(A_n(t) = \psi_0(t, -i\Sigma_n(t)) + \sum_{m=1}^d \psi_m(t, -i\Sigma_n(t))X_m(t) \) for
 \(A_n(t) := \sum_{m=n(t)+1}^n (T_m - T_{m-1})\alpha_m(t) \),
 \(\Sigma_n(t) := \sum_{m=n(t)+1}^n (T_m - T_{m-1})\sigma_m(t), \quad T_{n(t)-1} \leq t < T_{n(t)} \),
 \(\psi_0, \ldots, \psi_d \) exponents corresponding to \(X \)

- Discrete short rate dynamics: is not fully determined by model
Forward process models
– based on affine processes (Eberlein, Özkan 2005, etc.)

- Contin. comp. forward rate: \(f(t, S, T) := \frac{1}{T-S} \log \frac{B(t, S)}{B(t, T)} \)
- Numeraire: discrete money market account

\[
\tilde{S}_0(t) = \exp \left(- \sum_{m=1}^{n(T_{m-1}, T_{m-1}, T_m)(T_m - T_{m-1})} \tilde{f}(t, t, T_n)(T_n - t) \right) \quad \text{for } T_{n-1} \leq t < T_n
\]

- Forward process dynamics:
 \[
df(t, T_{n-1}, T_n) = \alpha_n(t)dt + \sigma_n(t)dX(t),
\]
 where \(\sigma_n \) deterministic,
 \(X \mathbb{R}^d \)-valued (time-inhomogeneous) affine process
 (under risk-neutral measure \(\tilde{Q}_0 \) for \(\tilde{S}_0 \))
- Forward process drift condition:
 \[
 A_n(t) = \psi_0(t, -i\Sigma_n(t)) + \sum_{m=1}^{d} \psi_m(t, -i\Sigma_n(t))X_m(t)
 \]
 for
 \[
 A_n(t) := \sum_{m=n(t)+1}^{n(T_{m-1}, T_{m-1}, T_m)(T_m - T_{m-1})} \alpha_m(t),
 \]
 \[
 \Sigma_n(t) := \sum_{m=n(t)+1}^{n(T_{m-1}, T_{m-1}, T_m)(T_m - T_{m-1})} \sigma_m(t), \quad T_{n(t)-1} \leq t < T_{n(t)},
 \]
 \(\psi_0, \ldots, \psi_d \) exponents corresponding to \(X \)
- Discrete short rate dynamics: is not fully determined by model
Forward process models
– based on affine processes, ct’d

- Bonds: state variables
- Bond options with time-T_m-payoff $H = (B(T_m, T_n) - K)^+$:

 $$\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_m, T_n}(t, z) \frac{K^{1-z}}{z(z-1)} dz$$

 with

 $$\pi_{T_m, T_n}(t, z) = \exp\left(\psi_0(t, T_m, T_n, iz) + \Psi_X(t, T_m, T_n, iz)^\top x(t)\right) \frac{B(t, T_n)^z}{B(t, T_m)^{z-1}}$$

- Swaptions:
 - suppose X univariate (time-inhomogeneous) Lévy,
 $$\sigma_n(t) = \lambda_n \sigma(t)$$
 - then $B(T_m, T_n) = \pi(T_m, T_n, Y(T_m))$ with
 $$Y(t) := \int_0^t \sigma(s) dX(s), \quad \Lambda(t, n) := \lambda_{n(t)+1} + \cdots + \lambda_n,$$
 $$\Sigma_n(t) := \Lambda(t, n) \sigma_n$$ for $T_{n(t)-1} \leq t < T_{n(t)} \leq T_n$,
 $$\pi(T_m, T_n, x) := \frac{B(0, T_n)}{B(0, T_m)} \exp\left(\int_0^{T_m} (A(s, T_n) - A(s, T_m)) \, dt\right) e^{\Lambda(T_m, n)x}$$
 - apply Jamshidian’s representation
Forward process models
– based on affine processes, ct’d

Bonds: state variables

Bond options with time-\(T_m\)-payoff \(H = (B(T_m, T_n) - K)^+\):

Value \(\pi(t) = \frac{1}{2\pi i} \int_{\mathbb{R}^+ \cup i\infty} \pi_{T_m, T_n}(t, z) \frac{K^{1-z}}{z(z-1)} \, dz\) with

\[
\pi_{T_m, T_n}(t, z) = \exp\left(\psi_0(t, T_m, T_n, iz) + \psi_X(t, T_m, T_n, iz)^\top x(t)\right) \frac{B(t, T_n)^z}{B(t, T_m)^{z-1}}
\]

Swaptions:

- Suppose \(X\) univariate (time-inhomogeneous) Lévy, \(\sigma_n(t) = \lambda_n \sigma(t)\)
- Then \(B(T_m, T_n) = \pi(T_m, T_n, Y(T_m))\) with
 \(Y(t) := \int_0^t \sigma(s) \, dX(s)\), \(\Lambda(t, n) := \lambda_{n(t)+1} + \cdots + \lambda_n\),
 \(\Sigma_n(t) := \Lambda(t, n) \sigma_n\) for \(T_{n(t)-1} \leq t < T_{n(t)} \leq T_n\),
 \(\pi(T_m, T_n, x) := \frac{B(0, T_n)}{B(0, T_m)} \exp\left(\int_0^{T_m} (A(s, T_n) - A(s, T_m)) \, dt\right) e^{\Lambda(T_m, n)x}\)
- Apply Jamshidian’s representation
Forward process models
– based on affine processes, ct’d

- Bonds: state variables

- Bond options with time-T_m-payoff $H = (B(T_m, T_n) - K)^+$:
 value $\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_m, T_n}(t, z) \frac{K^{1-z}}{z(z-1)} \, dz$ with

 $\pi_{T_m, T_n}(t, z) = \exp\left(\psi_0(t, T_m, T_n, iz) + \psi_X(t, T_m, T_n, iz)\top x(t)\right) \frac{B(t, T_n)^z}{B(t, T_m)^{z-1}}$

- Swaptions:
 ▶ suppose X univariate (time-inhomogeneous) Lévy, $\sigma_n(t) = \lambda_n \sigma(t)$
 ▶ then $B(T_m, T_n) = \pi(T_m, T_n, Y(T_m))$ with
 $Y(t) := \int_0^t \sigma(s) dX(s)$, $\Lambda(t, n) := \lambda_{n(t)+1} + \cdots + \lambda_n$,
 $\Sigma_n(t) := \Lambda(t, n) \sigma_n$ for $T_{n(t)+1} < t < T_{n(t)} \leq T_n$,
 $\pi(T_m, T_n, x) := \frac{B(0, T_n)}{B(0, T_m)} \exp\left(\int_0^{T_m} (A(s, T_n) - A(s, T_m)) \, dt \right) e^{\Lambda(T_m, n)x}$
 ▶ apply Jamshidian’s representation
Forward process models
– based on affine processes, ct’d

- Bonds: state variables

- Bond options with time- T_m-payoff $H = (B(T_m, T_n) - K)^+$:
 value $\pi(t) = \frac{1}{2\pi i} \int_{R^{-i\infty}}^{R^{+i\infty}} \pi_{T_m, T_n}(t, z) \frac{K^{1-z}}{z(z-1)} \, dz$ with

 $\pi_{T_m, T_n}(t, z)
 = \exp\left(\psi_0(t, T_m, T_n, iz) + \psi_X(t, T_m, T_n, iz)^\top x(t)\right)\frac{B(t, T_n)^z}{B(t, T_m)^{z-1}}$

- Swaptions:
 - suppose X univariate (time-inhomogeneous) Lévy,
 $\sigma_n(t) = \lambda_n \sigma(t)$
 - then $B(T_m, T_n) = \pi(T_m, T_n, Y(T_m))$ with
 $Y(t) := \int_0^t \sigma(s) dX(s)$, \quad $\Lambda(t, n) := \lambda_{n(t)+1} + \cdots + \lambda_n$,
 $\Sigma_n(t) := \Lambda(t, n) \sigma_n$ for $T_{n(t)-1} \leq t < T_{n(t)} \leq T_n$,
 $\pi(T_m, T_n, x) := \frac{B(0, T_n)}{B(0, T_m)} \exp\left(\int_0^{T_m} (A(s, T_n) - A(s, T_m)) \, ds \right) e^{\Lambda(T_m, n)x}$
 - apply Jamshidian’s representation
Forward process models
– based on affine processes, ct’d

- Bonds: state variables
- Bond options with time-T_m-payoff $H = (B(T_m, T_n) - K)^+$:
 value $\pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_m, T_n}(t, z) \frac{K^{1-z}}{z(z-1)} \, dz$ with

$$
\pi_{T_m, T_n}(t, z) = \exp\left(\psi_0(t, T_m, T_n, iz) + \psi_X(t, T_m, T_n, iz)^\top x(t)\right) \frac{B(t, T_n)^z}{B(t, T_m)^{z-1}}
$$

- Swaptions:
 - suppose X univariate (time-inhomogeneous) Lévy, $\sigma_n(t) = \lambda_n \sigma(t)$
 - then $B(T_m, T_n) = \pi(T_m, T_n, Y(T_m))$ with
 $$Y(t) := \int_0^t \sigma(s) \, dX(s), \quad \Lambda(t, n) := \lambda_{n(t)+1} + \cdots + \lambda_n,$$
 $$\Sigma_n(t) := \Lambda(t, n) \sigma_n \text{ for } T_{n(t)-1} \leq t < T_{n(t)} \leq T_n,$$
 $$\pi(T_m, T_n, x) := \frac{B(0, T_n)}{B(0, T_m)} \exp\left(\int_0^{T_m} (A(s, T_n) - A(s, T_m)) \, dt\right) e^{\Lambda(T_m, n)x}$$
 - apply Jamshidian’s representation
Forward process models
– based on affine processes, ct’d

- Bonds: state variables

- Bond options with time-T_m-payoff $H = (B(T_m, T_n) - K)^+$:
 \[
 \pi(t) = \frac{1}{2\pi i} \int_{R-i\infty}^{R+i\infty} \pi_{T_m, T_n}(t, z) \frac{K^{1-z}}{z(z-1)} dz
 \]
 with
 \[
 \pi_{T_m, T_n}(t, z) = \exp\left(\psi_0(t, T_m, T_n, iz) + \psi_X(t, T_m, T_n, iz)^\top x(t)\right) \frac{B(t, T_n)^z}{B(t, T_m)^{z-1}}
 \]

- Swaptions:
 - suppose X univariate (time-inhomogeneous) Lévy,
 $\sigma_n(t) = \lambda_n \sigma(t)$
 - then $B(T_m, T_n) = \pi(T_m, T_n, Y(T_m))$ with
 $Y(t) := \int_0^t \sigma(s)dX(s)$, $\Lambda(t, n) := \lambda_{n(t)+1} + \cdots + \lambda_n$,
 $\Sigma_n(t) := \Lambda(t, n) \sigma_n$ for $T_{n(t)-1} \leq t < T_{n(t)} \leq T_n$,
 $\pi(T_m, T_n, x) := \frac{B(0, T_n)}{B(0, T_m)} \exp\left(\int_0^{T_m} (A(s, T_n) - A(s, T_m)) dt \right) e^{\Lambda(T_m, n)x}$
 - apply Jamshidian’s representation
Forward process models
– based on affine processes, ct’d

- Bonds: state variables
- Bond options with time-T_m-payoff $H = (B(T_m, T_n) - K)^+$:
 value $\pi(t) = \frac{1}{2\pi i} \int_{\mathbb{R}^+}^{\mathbb{R}^-} \pi_{T_m, T_n}(t, z) \frac{K^{1-z}}{z(z-1)} \, dz$ with

$$
\pi_{T_m, T_n}(t, z) = \exp\left(\psi_0(t, T_m, T_n, iz) + \psi_X(t, T_m, T_n, iz)^\top x(t)\right) \frac{B(t, T_n)^z}{B(t, T_m)^{z-1}}
$$

- Swaptions:
 - suppose X univariate (time-inhomogeneous) Lévy, $\sigma_n(t) = \lambda_n \sigma(t)$
 - then $B(T_m, T_n) = \pi(T_m, T_n, Y(T_m))$ with
 $Y(t) := \int_0^t \sigma(s) \, dX(s)$, $\Lambda(t, n) := \lambda_{n(t)+1} + \cdots + \lambda_n$,
 $\Sigma_n(t) := \Lambda(t, n) \sigma_n$ for $T_{n(t)-1} \leq t < T_{n(t)} \leq T_n$,
 $\pi(T_m, T_n, x) := \frac{B(0, T_n)}{B(0, T_m)} \exp\left(\int_0^{T_m} (A(s, T_n) - A(s, T_m)) \, dt \right) e^{\Lambda(T_m, n)x}$
 - apply Jamshidian’s representation