Uncertainty Principles, Extractors, and Explicit Embeddings of L_2 into L_1

Piotr Indyk
MIT
Uncertainty principles (UP)

• Consider a vector \(x \in \mathbb{R}^n \) and a Fourier matrix \(F \)

• UP: either \(x \) or \(Fx \) must have “many” non-zero entries (for \(x \neq 0 \))

• History:
 – Physics: Heisenberg principle
 – Signal processing [Donoho-Stark’89]:
 • Consider any \(2n \times n \) matrix \(A=[I \ B]^T \) such that
 – \(B \) is orthonormal
 – For any distinct rows \(A_i, A_j \) of \(A \) we have
 \[|A_i^* * A_j| \leq M \]
 • Then for any \(x \in \mathbb{R}^n \) we have that
 \[||x||_0 + ||Bx||_0 > 1/M \]
 – E.g., if \(A=[I \ H]^T \), where \(H \) is a normalized \(n \times n \) Hadamard matrix (orthogonal, entries in \(\{-1/n^{1/2}, 1/n^{1/2}\} \)):
 • \(M=1/n^{1/2} \)
 • \(Ax \) must have \(>n^{1/2} \) non-zero entries
Extractors

- Expander-like graphs:
 - $G=(A, B, E)$, $|A|=a$, $|B|=b$
 - Left degree d
- Property:
 - Consider any distribution $P=(p_1, \ldots, p_a)$ on A s.t. $p_i \leq 1/k$
 - $G(P)$: a distribution on B:
 - Pick i from P
 - Pick t uniformly from $[d]$
 - j is the t-th neighbor of i
 - Then $||G(P)-\text{Uniform}(B)||_1 \leq \varepsilon$
- Equivalently, can require the above for $p_i = 1/k$
- Many explicit constructions
- Holy grail:
 - $k=b$
 - $d=O(\log a)$
- Observation: w.l.o.g. one can assume that the right degree is $O(ad/b)$
(Norm) embeddings

• Metric spaces $M=(X,D)$, $M'=(X',D')$
 (here, $X=\mathbb{R}^n$, $X'=\mathbb{R}^m$, $D=||.||_X$ and $D=||.||_{X'}$)
• A mapping $F: M \rightarrow M'$ is a c-embedding if for any $p \in X$, $q \in X$ we have
 $D(p,q) \leq D'(F(p),F(q)) \leq c \cdot D(p,q)$
 (or, $||p-q||_X \leq ||F(p-q)||_{X'} \leq c \cdot ||p-q||_X$)

• History:
 – Mathematics:
 • [Dvoretzky'59]: there exists $m(n,\varepsilon)$ s.t., for any $m>m(n,\varepsilon)$ and any space $M'=(\mathbb{R}^m,||.||_{X'})$
 there exists a $(1+\varepsilon)$-embedding of an n-dimensional Euclidean space l_2^n into M'
 • In general, m must be exponential in n
 • [Milman'71]: probabilistic proof
 •
 • [Figiel-Lindenstrauss-Milman'77, Gordon]: if $M'=l_1^m$, then $m \approx n/\varepsilon^2$ suffices
 That is, l_2^n $O(1)$-embeds into $l_1^{O(n)}$
 A.k.a. Dvoretzky's theorem for l_1
 – Computer science:
 • [Linial-London-Rabinovich'94]: [Bourgain'85] for sparsest cut, many other tools
 •
 • [Dvoretzky, FLM] used for approximate nearest neighbor [IM'98, KOR'98], hardness of
 lattice problems [Regev-Rosen'06], etc.
Recap

• Uncertainty principles
• Extractors
• (Norm) embeddings
Dvoretzky theorem, ctd.

• Since [Milman’71], almost all proofs in geometric functional analysis use probabilistic method
 – In particular, the [FLM] embedding of l_2^n into $l_1^{O(n)}$ uses random linear mapping $A: \mathbb{R}^n \rightarrow \mathbb{R}^{O(n)}$

• **Question**: can one construct such embeddings **explicitly**?
 [Milman’00, Johnson-Schechtman’01]
Embedding \(l_2^n \) into \(l_1 \)

<table>
<thead>
<tr>
<th>Distortion</th>
<th>Dim. of (l_1)</th>
<th>Type</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1+\sigma)</td>
<td>(O(n/\sigma^2))</td>
<td>Probabilistic</td>
<td>[FLM,Gordon]</td>
</tr>
<tr>
<td>(O(1))</td>
<td>(O(n^2))</td>
<td>Explicit</td>
<td>[Rudin’60,LLR]</td>
</tr>
<tr>
<td>(1+1/n)</td>
<td>(n^{O(\log n)})</td>
<td>Explicit</td>
<td>[Indyk’00]</td>
</tr>
<tr>
<td>(1+1/\log n)</td>
<td>(n^{2^{O(\log \log n)^2}})</td>
<td>Explicit</td>
<td>This talk</td>
</tr>
</tbody>
</table>
Other implications

• The embedding takes time $O(n^{1+o(1)})$, as opposed to $O(n^2)$ [FLM]

• Similar phenomenon discovered for Johnson-Lindenstrauss dimensionality reduction lemma [Ailon-Chazelle’06],
 – Applications to approximate nearest neighbor problem, Singular Value Decomposition, etc
 – More on this later
Embedding of l_2^n into l_1: overview

• How does [FLM] work?
 – Choose a “random” matrix $A: \mathbb{R}^n \rightarrow \mathbb{R}^m$, $m=O(n)$
 • E.g., the entries A_{ij} are i.i.d. random variables with normal distribution ($\text{mean}=0$, $\text{variance}=1/m$)
 – Then, for any unit vector x, $(Ax)_i$ is distributed according to $N(0,1/m)$
 – With prob. $1-\exp(-m)$, constant fraction of such variables is $\Theta(1/m^{1/2})$. I.e.,
 $$Ax = (\approx1/m^{1/2}, \ldots, \approx1/m^{1/2}, \ldots, \ldots, \approx1/m^{1/2})$$
 – This implies $\|Ax\|_1 = \Omega(m^{1/2} \|x\|_2)$
 – Similar arguments give $\|Ax\|_1 = O(m^{1/2} \|x\|_2)$
 – Can extend to the whole \mathbb{R}^n
Overview, ctd.

- We would like to obtain something like

\[Ax = (\approx 1/m^{1/2}, \ldots, \approx 1/m^{1/2}, \ldots, \ldots, \approx 1/m^{1/2}) \]

\[
\begin{array}{cccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[\approx 0^{1/4} \quad \approx 0^{1/4} \quad 0 \quad \approx 0^{1/4} \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \]

UP: \(n^{1/2} \) non-zero entries

Extractor

\[\approx 1/n^{1/4} \quad 0 \quad 0 \quad \approx 1/n^{1/4} \quad 0 \quad 0 \quad 0 \quad 0 \quad \approx 1/n^{1/4} \]

* constant

* \(d = \log^{O(1)} n \)

Repeat \(\log \log n \) times

Total blowup: \((\log n)^{O(\log \log n)} \)
Part I:

- Lemma:
 - Let \(A = [H_1 \ H_2 \ldots \ H_L]^T \), such that:
 - Each \(H_i \) is an \(n \times n \) orthonormal matrix
 - For any two distinct rows \(A_i, A_j \) we have \(|A_i^*A_j| \leq M \)
 - \(M \) is called coherence
 - Then, for any \(x \in \mathbb{R}^n \), and set \(S \) of coordinates, \(|S| = s \):
 \[
 \| (Ax)_S \|_2^2 \leq 1 + Ms
 \]
 (note that \(\| (Ax) \|_2^2 = L \))

- Proof:
 - Take \(A_S \)
 - \(\max_{\|x\| = 1} \|A_S x\|_2^2 = \lambda(A_S \times A_S^T) \)
 - But \(A_S \times A_S = I + E \), \(|E| \leq M \)
 - Since \(E \) is an \(s \times s \) matrix, \(\lambda(E) \leq Ms \)

- Suppose that we have \(A \) s.t. \(M \leq 1/n^{1/2} \). Then:
 - For any \(x \in \mathbb{R}^n \), \(|S| \leq n^{1/2} \), we have \(\| (Ax)_S \|_2^2 \leq 2 \)
 - At the same time, \(\| (Ax) \|_2^2 = L \)
 - Therefore, \((1-2/L)\) fraction of the “mass” \(\|Ax\|_2^2 \) is contained in coordinates \(i \) s.t. \((Ax)_i^2 \leq 1/n^{1/2} \)
Part II:

- Let \(y=(y_1, \ldots, y_n') \)
- Define probability distribution
 \[
 P = (\frac{y_1^2}{||y||_2^2}, \ldots, \frac{y_n^2}{||y||_2^2})
 \]
- Extractor properties imply that, for “most” buckets \(B_i \), we have
 \[
 ||G(y)|_{B_i}||_2^2 \approx \frac{||G(y)||_2^2}{\#buckets}
 \]
- After \(\log \log n \) steps, “most” entries will be around \(1/n^{1/2} \)
Incoherent dictionaries

• Can we construct $A = [H_1 \ H_2 \ ... \ H_L]^T$ with coherence $1/n^{1/2}$?
 - For $L=2$, take $A = [I \ H]^T$
 - Turns out A exists for L up to $n/2+1$
 • $H_i = H \times D_i$, D_i has ±1 on the diagonal and 0’s elsewhere
 • [Calderbank-Cameron-Cantor-Seidel] for more (Kerdock codes)
Digression

- **Johnson-Lindenstrauss’84:**
 - Take a “random” matrix $A: \mathbb{R}^n \rightarrow \mathbb{R}^{m/\varepsilon^2} (m << n)$
 - For any $\varepsilon > 0, x \in \mathbb{R}^n$ we have
 \[||Ax||_2 = (1 \pm \varepsilon)||x||_2 \]
 with probability $1-\exp(m)$
 - Ax can be computed in $O(mn/\varepsilon^2)$ time

- **Ailon-Chazelle’06:**
 - Essentially: take $B = A \times P \times (H \times D_i)$, where
 - H: Hadamard matrix
 - D_i: random ± 1 diagonal matrix
 - P: projection on m^2 coordinates
 - A as above (but n replaced by m/ε^2)
 - Ax can be computed $O(n\log n + m^3/\varepsilon^2)$
Conclusions

• Extractors+UP → Embedding of l_2^n into l_1
 – Dimension almost as good as for the probabilistic result
 – Near-linear in n embedding time

• Questions:
 – Remove $2^{O(\log \log n)^2}$?
 – Making other embeddings explicit ?
 – Any particular reason why both [AC’06] and this paper use $H \times D_i$ matrices ?