Embeddings of locally finite metric spaces into Banach spaces.

Florent BAUDIER

January 25, 2007
PART I

Locally finite metric spaces
1 Locally finite metric spaces

- Definition of the different embeddings
Definition (lipschitz embedding)

Let \((M, d)\) and \((N, \delta)\) be two metric spaces and an injective map \(f : M \to N\). We define the distortion of \(f\) to be

\[
\text{dist}(f) = \| f \|_{\text{Lip}} \| f^{-1} \|_{\text{Lip}}
\]

\[
= \sup_{x \neq y \in M} \frac{\delta(f(x), f(y))}{d(x, y)} \cdot \sup_{x \neq y \in M} \frac{d(x, y)}{\delta(f(x), f(y))}.
\]
Definition (lipschitz embedding)

- Let \((M, d)\) and \((N, \delta)\) be two metric spaces and an injective map \(f : M \rightarrow N\). We define the distortion of \(f\) to be

\[
\text{dist}(f) = \| f \|_{Lip} \| f^{-1} \|_{Lip}
\]

\[
= \sup_{x \neq y \in M} \frac{\delta(f(x), f(y))}{d(x, y)} \cdot \sup_{x \neq y \in M} \frac{d(x, y)}{\delta(f(x), f(y))}.
\]

- If \(\text{dist}(f)\) is finite, we say that \(f\) is a lipschitz embedding, or simply an embedding of \(M\) into \(N\).
Definition (lipschitz embedding)

- Let \((M, d)\) and \((N, \delta)\) be two metric spaces and an injective map \(f : M \rightarrow N\). We define the distortion of \(f\) to be

\[
\text{dist}(f) = \| f \|_{Lip} \| f^{-1} \|_{Lip}
\]

\[
= \sup_{x \neq y \in M} \frac{\delta(f(x), f(y))}{d(x, y)} \cdot \sup_{x \neq y \in M} \frac{d(x, y)}{\delta(f(x), f(y))}.
\]

- If \(\text{dist}(f)\) is finite, we say that \(f\) is a lipschitz embedding, or simply an embedding of \(M\) into \(N\).

- And if there exists an embedding \(f\) from \(M\) into \(N\), with \(\text{dist}(f) \leq C\), we use the notation \(M \overset{C-\text{lip}}{\hookrightarrow} N\).
Definition (coarse, uniform and strong uniform embeddings)

- Let \((M, d)\) and \((N, \delta)\) be two metric spaces. Suppose \(f : M \to N\) is any map and let

\[
\varphi_f(t) = \inf\{d(f(x), f(y)) : d(x, y) \geq t\} \quad t > 0
\]

and

\[
\omega_f(t) = \sup\{d(f(x), f(y)) : d(x, y) \leq t\} \quad t > 0
\]
Definition (coarse, uniform and strong uniform embeddings)

- Let \((M, d)\) and \((N, \delta)\) be two metric spaces. Suppose \(f : M \rightarrow N\) is any map and let

\[
\varphi_f(t) = \inf \{d(f(x), f(y)) : d(x, y) \geq t\} \quad t > 0
\]

and

\[
\omega_f(t) = \sup \{d(f(x), f(y)) : d(x, y) \leq t\} \quad t > 0
\]

so that

\[
\varphi_f(d(x, y)) \leq d(f(x), f(y)) \leq \omega_f(d(x, y)) \quad \forall x, y \in M.
\]
Then we say that f is a coarse embedding and M coarsely embeds into N if $\omega_f(t) < \infty$ for all t and $\lim_{t \to \infty} \varphi_f(t) = \infty$. We shall refer to f as a strong uniform embedding if it is both a coarse embedding and a uniform embedding.
Then we say that f is a coarse embedding and M coarsely embeds into N if $\omega_f(t) < \infty$ for all t and $\lim_{t \to \infty} \varphi_f(t) = \infty$.

On the other hand f is a uniform embedding and M uniformly embeds into N if $\varphi_f(t) > 0$ for all $t > 0$ and $\lim_{t \to 0} \omega_f(t) = 0$.
Then we say that \(f \) is a coarse embedding and \(M \) coarsely embeds into \(N \) if \(\omega_f(t) < \infty \) for all \(t \) and \(\lim_{t \to \infty} \varphi_f(t) = \infty \).

On the other hand \(f \) is a uniform embedding and \(M \) uniformly embeds into \(N \) if \(\varphi_f(t) > 0 \) for all \(t > 0 \) and \(\lim_{t \to 0} \omega_f(t) = 0 \).

We shall refer to \(f \) as a strong uniform embedding if it is both a coarse embedding and a uniform embedding.
I Locally finite metric spaces
 ■ Definition of the different embeddings
I Locally finite metric spaces
 ■ Definition of the different embeddings
 ■ Questions and partial answers
Question I

Let X be a Banach space. Do we have: $(\forall \ M \text{ separable metric space}, \ M \xrightarrow{\text{lip}} X) \Rightarrow (c_0 \xrightarrow{\sim} X)$ or equivalently $(c_0 \xrightarrow{\text{lip}} X) \Rightarrow (c_0 \xrightarrow{\sim} X)$.

[N.J. Kalton]('04) There exists a Banach space X s.t. c_0 strongly uniformly embeds into X but c_0 does not isomorphically embeds into X.

[N.J. Kalton]('06) If c_0 coarsely or uniformly embeds into a Banach space X, then there exists $n \in \mathbb{N}$ s.t. $X(n)$ is non-separable.
Question 1

Let X be a Banach space. Do we have: $(\forall \ M \text{ separable metric space, } M \xrightarrow{\text{lip}} X) \Rightarrow (c_0 \looparrowright X)$ or equivalently $(c_0 \xrightarrow{\text{lip}} X) \Rightarrow (c_0 \looparrowright X)$.

[N.J. Kalton]('04)

There exists a Banach space X s.t. c_0 strongly uniformly embeds into X but c_0 does not isomorphically embeds into X.
Question 1

Let X be a Banach space. Do we have: $(\forall M$ separable metric space, $M \leftrightarrow X) \Rightarrow (c_0 \leftrightarrow X)$ or equivalently $(c_0 \leftrightarrow X) \Rightarrow (c_0 \leftrightarrow X)$.

[N.J. Kalton]'(04)

There exists a Banach space X s.t. c_0 strongly uniformly embeds into X but c_0 does not isomorphically embeds into X.

[N.J. Kalton]'(06)

If c_0 coarsely or uniformly embeds into a Banach space X, then there exists $n \in \mathbb{N}$ s.t. $X^{(n)}$ is non-separable.
Question II

Which metric spaces can be coarsely embedded into a super-reflexive or reflexive Banach space.
Question II

Which metric spaces can be coarsely embedded into a super-reflexive or reflexive Banach space.

Definition

A metric space M is locally finite if any ball of M with finite radius is finite. If moreover, there is a function $C : (0, +\infty) \to \mathbb{N}$ such that any ball of radius r contains at most $C(r)$ points, we say that M has a bounded geometry.
Let M be a metric space with bounded geometry. There exists a sequence of positive real numbers $\{p_n\}$ and a coarse embedding of M into the ℓ^2 – direct sum $\bigoplus \ell^{p_n}(\mathbb{N})$.

[N. Brown, E. Guentner](’05)
Let M be a metric space with bounded geometry. There exists a sequence of positive real numbers $\{p_n\}$ and a coarse embedding of M into the ℓ^2 — direct sum $\bigoplus \ell^{p_n}(\mathbb{N})$.

If M is a locally finite metric space then M strongly uniformly embeds into a reflexive Banach space.
I Locally finite metric spaces

- Definition of the different embeddings
- Questions and partial answers
I Locally finite metric spaces
 ■ Definition of the different embeddings
 ■ Questions and partial answers
 ■ Result
Definition

Let X and Y be two Banach spaces. If X and Y are linearly isomorphic, i.e., there exists a one-to-one and onto linear application, the Banach-Mazur distance between X and Y, denoted by $d_{BM}(X, Y)$, is the infimum of $\|T\| \|T^{-1}\|$, over all linear isomorphisms T from X onto Y.
Definition

Let X and Y be two Banach spaces. If X and Y are linearly isomorphic, i.e., there exists a one-to-one and onto linear application, the *Banach-Mazur distance* between X and Y, denoted by $d_{BM}(X, Y)$, is the infimum of $\|T\| \|T^{-1}\|$, over all linear isomorphisms T from X onto Y.

Definition

For $p \in [1, \infty]$ and $n \in \mathbb{N}$, ℓ^n_p denotes the space \mathbb{R}^n equipped with the ℓ_p norm. We say that a Banach space X uniformly contains the ℓ^n_p's if there is a constant $C \geq 1$ such that for every integer n, X admits an n-dimensional subspace Y so that $d_{BM}(\ell^n_p, Y) \leq C$.
Theorem (F.B., G. Lancien ’06)

There exists a universal constant $C > 1$ such that for every Banach space X uniformly containing the ℓ^n_∞’s and every locally finite metric space (M, d): $M \overset{C}{\hookrightarrow} X$.
PART II

The hyperbolic tree
I Locally finite metric spaces
 ■ Definition of the different embeddings
 ■ Questions and partial answers
 ■ Result
II The hyperbolic tree
I Locally finite metric spaces
 ■ Definition of the different embeddings
 ■ Questions and partial answers
 ■ Result

II The hyperbolic tree
 ■ Notation
Denote $\Omega_0 = \{\emptyset\}$, the root of the tree.
Let $\Omega_n = \{-1, 1\}^n$, $T_n = \bigcup_{i=0}^n \Omega_i$ and $T = \bigcup_{n=0}^{\infty} T_n$.
Denote $\Omega_0 = \{\emptyset\}$, the root of the tree.
Let $\Omega_n = \{-1, 1\}^n$, $T_n = \bigcup_{i=0}^n \Omega_i$ and $T = \bigcup_{n=0}^\infty T_n$.
For $\varepsilon, \varepsilon' \in T$, we note $\varepsilon \leq \varepsilon'$ if ε' is an extension of ε.
Denote $\Omega_0 = \{\emptyset\}$, the root of the tree.
Let $\Omega_n = \{-1, 1\}^n$, $T_n = \bigcup_{i=0}^n \Omega_i$ and $T = \bigcup_{n=0}^{\infty} T_n$.

For $\varepsilon, \varepsilon' \in T$, we note $\varepsilon \leq \varepsilon'$ if ε' is an extension of ε.

Denote $|\varepsilon|$ the length of ε; i.e. the numbers of nodes (or coordinates) of ε.
Denote $\Omega_0 = \{\emptyset\}$, the root of the tree. Let $\Omega_n = \{-1, 1\}^n$, $T_n = \bigcup_{i=0}^n \Omega_i$ and $T = \bigcup_{n=0}^\infty T_n$.

For $\varepsilon, \varepsilon' \in T$, we note $\varepsilon \leq \varepsilon'$ if ε' is an extension of ε.

Denote $|\varepsilon|$ the length of ε; i.e. the numbers of nodes (or coordinates) of ε.

We define the hyperbolic distance between ε and ε' by $\rho(\varepsilon, \varepsilon') = |\varepsilon| + |\varepsilon'| - 2|\delta|$, where δ is the greatest common ancestor of ε and ε'.
Denote $\Omega_0 = \{\emptyset\}$, the root of the tree.
Let $\Omega_n = \{-1, 1\}^n$, $T_n = \bigcup_{i=0}^n \Omega_i$ and $T = \bigcup_{n=0}^\infty T_n$.

For $\varepsilon, \varepsilon' \in T$, we note $\varepsilon \leq \varepsilon'$ if ε' is an extension of ε.

Denote $|\varepsilon|$ the length of ε; i.e the numbers of nodes (or coordinates) of ε.

We define the hyperbolic distance between ε and ε' by
$\rho(\varepsilon, \varepsilon') = |\varepsilon| + |\varepsilon'| - 2|\delta|$, where δ is the greatest common ancestor of ε and ε'.

T embeds isometrically into $\ell_1(\mathbb{N})$ in a trivial way. Actually, let $(e_{\varepsilon})_{\varepsilon \in T}$ be the canonical basis of $\ell_1(T)$ (T is countable), then the embedding is given by $\varepsilon \mapsto \sum_{s \leq \varepsilon} e_s$.
I Locally finite metric spaces
 - Definition of the different embeddings
 - Questions and partial answers
 - Result

II The hyperbolic tree
 - Notation
I Locally finite metric spaces
 ■ Definition of the different embeddings
 ■ Questions and partial answers
 ■ Result

II The hyperbolic tree
 ■ Notation
 ■ Motivation
[Bourgain] (’86)

A Banach space X is not super-reflexive if and only if the finite trees T_n uniformly embed into X (i.e with embedding constants independent of n).
I Locally finite metric spaces
- Definition of the different embeddings
- Questions and partial answers
- Result

II The hyperbolic tree
- Notation
- Motivation
I Locally finite metric spaces
 - Definition of the different embeddings
 - Questions and partial answers
 - Result

II The hyperbolic tree
 - Notation
 - Motivation
 - Result
Theorem (F.B. ’06)

Let X be a non super-reflexive Banach space, then (T, ρ) embeds into X.