The Feynman approximation for the solution of heat equation on branching manifolds   28 October 2013

Organiser

Viktoryia Dubravina, University of Russia

We shall investigate the Feynman approximation for the solutions of Cauchy problem for special type of differentional equations of second order of a branching manifold Y3. These solutions will be represented as a limit of multiple integrals over Cartesian powers of configuration space, as multiplicity tends to infinity. Such representations are called a Lagrangian Feynman formulae. We consider the collection of differentional equations which can describe the diffusion or similar processes on a branching manifold Y3, which can be described as a Cartesian multiplication of a real line R and a graph consisting of one vertex and 3 rays. The coefficients of heat conductivity are considered to be the parameters of our equations. And their solutions satisfy natural border conditions - the consistence of functions on common line of Y3 and the analogue of Kirchhoff’s circuit law (the sum of derivatives of the solution taken with coefficients, equals 0). These conditions specify the Feynman formula which is used to solve the problem.


Name University Dates of visit
Viktoryia Dubravina University of Russia 28/10/2013 - 28/10/2013
Total Guests : 1
Name University Dates of visit
Total Guests : 0
Conference in Honor of the 70th Birthday of Tudor Ratiu, 20 to 24 July 2020.
Registration fees of CHF 50.- are mandatory for visits from 1 day to full attendance of the conference.
Cancellations and no-shows are not eligible for a refund.
I hereby agree to the conditions of the registration fees and to settling the amount by 28 February 2020.

Last Name
First Name
Address
Zip Code
City
Country
Email
Participation
CHF