Generalized complex geometry minicourse, Poisson 2008

Problem sheet (Instructor: Marco Gualtieri, mgualt@math.utoronto.ca)

Exercise 1. Let \(\omega \in C^\infty(\bigwedge^2 T^*) \) be nondegenerate, so that the map \(\omega : T \longrightarrow T^* \) defined by

\[
\omega : X \mapsto i_X \omega
\]

is invertible. Show that this is only possible if \(\dim T = 2n \) for some integer \(n \).

Then \(\det \omega : \det T \longrightarrow \det T^* \), or in other words

\[
\det \omega \in \det T^* \otimes \det T^*.
\]

Show that \(\det \omega = (\text{Pf} \ \omega)^2 \), where

\[
\text{Pf} \ \omega = \frac{1}{n!} \omega^n.
\]

Construct the operator \(\begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix} \) on \(T \oplus T^* \) and verify that it is an almost generalized complex structure. What is the \(+i\)-eigenbundle of this operator?

Under what condition is the graph \(\Gamma_{i\omega} = \{ X+i\omega(X) : X \in T \otimes \mathbb{C} \} \) integrable with respect to the Courant bracket?

What is the pure spinor line \(K \subset \bigwedge \cdot \bigwedge T^* \otimes \mathbb{C} \) annihilated by \(\Gamma_{i\omega} \)?

Exercise 2. Let \(J \in \text{End}(T) \) be an almost complex structure, and let \(N_J = [J, J] \) be its Nijenhuis tensor, defined alternatively by

\[
[J, J](X, Y) = [X, Y] - [JX, JY] + J([JX, Y] + [X, JY]).
\]

Defining \(\partial : \Omega^{p,q}(M) \longrightarrow \Omega^{p+1,q}(M) \) by \(\partial = \pi_{p+1,q} d \) and \(\overline{\partial} \) its complex conjugate, then

\[
d = \partial + \overline{\partial} + d_N;
\]

determine the operator \(d_N \) and its decomposition into \((p, q)\) types.

Construct the operator \(\begin{pmatrix} J & 0 \\ 0 & -J^* \end{pmatrix} \) on \(T \oplus T^* \) and verify that it is an almost generalized complex structure. What is the \(+i\)-eigenbundle?

Under what condition is the \(+i\)-eigenbundle \(L \) Courant integrable? What is the pure spinor line it annihilates?

Exercise 3. Consider the complex differential form \(\rho = w + dw \wedge dz \), for \((w, z)\) standard coordinates on \(\mathbb{C}^2 \). Show that \(\rho \) is a pure spinor defining a generalized complex structure on \(\mathbb{C}^2 \). What is the type of the structure defined by \(\rho \)? Write the induced generalized complex structure as an operator on \(T \oplus T^* \). What is the real Poisson structure associated to \(\rho \)?
Exercise 4. For a real vector space V, let $C_+ \subset V \oplus V^*$ be a maximal positive-definite subspace, and let C_- be its orthogonal complement with respect to the canonical bilinear form $\langle \cdot, \cdot \rangle$ on $V \oplus V^*$. Show that C_+ must be the graph of $g + b$ for $g \in S^2V^*$ and $b \in \wedge^2V^*$. Let $G = 1|_{C_+} - 1|_{C_-}$ be the associated generalized metric, so that $\langle G \cdot, \cdot \rangle$ defines a positive-definite metric on $V \oplus V^*$.

- Show that the restriction of G to $V \subset V \oplus V^*$ is

$$g^b = g - bg^{-1}b.$$

Show explicitly that g^b is indeed positive-definite. Also, show that its volume form is given by

$$vol_{g^b} = \det(g - bg^{-1}b)^{1/2} = \det(g + b) \det g^{-1/2}.$$

- Let (e_i) be an oriented g-orthonormal basis for V. Show that $(a_i = e_i + (g + b)(e_i))$ form an oriented orthonormal basis for C_+. Hence $\ast = a_1 \cdots a_n$ is a generalized Hodge star. Show that $\ast \in \operatorname{Pin}(V \oplus V^*)$ covers $-G \in \operatorname{O}(V \oplus V^*)$.

- Show explicitly that the Mukai pairing $(\ast 1, 1) = \det(g + b) \det g^{-1/2} = vol_{g^b}$.

- Show that $vol_{g^b}/vol_g = ||e_b||_g^2$ (Hint: determine the relationship between \ast_g and \ast_{g^b}.)

Exercise 5. Show that the derived bracket expression $[(a,b)]_H \cdot \varphi = [[d_H,a],b]\cdot \varphi$ for the twisted Courant bracket (where $d_H = d + H \wedge \cdot$) agrees with that obtained from the axioms of an exact Courant algebroid, i.e.

$$[X + \xi,Y + \eta]_H = [X,Y] + L_X\eta - iy d\xi + iy i_X H.$$

Exercise 6. Let $[\cdot,\cdot]$ be the derived bracket on $\mathcal{C}^\infty(T \oplus T^*)$ of the operator $d_H = d + H \wedge \cdot$ but do not assume that $dH = 0$. Prove that

$$[[a,b],c] = [a,[b,c]] - [b,[a,c]] + i_{\pi c} i_{\pi b} i_{\pi a} dH.$$

Exercise 7. Let $\pi : T^* \to T$ be a Poisson structure with associated Poisson bracket $\{\cdot,\cdot\}$. Show that T^* inherits a natural Lie algebroid structure, where π is the anchor map and

$$[df,dg] = d\{f,g\}.$$

Exercise 8. Let β, β' be gauge equivalent Poisson structures, i.e.

$$\beta' = \beta(1 + B\beta)^{-1}$$

for $B \in \Omega^2(M,\mathbb{R})$ and such that the inverse above exists. Verify that β' is indeed Poisson, and show that there is a canonical isomorphism between the β and β' Poisson cohomology groups.
Exercise 9. Let \(L \subset T \oplus T^* \) be an \(H \)-twisted Dirac structure on \(N \) and let \(M \subset N \) be a leaf of the generalized distribution \(\Delta = \pi_T(L) \) on \(N \). Then \(L \) determines canonically a 2-form \(\epsilon \in \Omega^2(M) \). Show using the integrability of \(L \) that \(de = f^*H \), where \(f : M \to N \) is the inclusion map.

Exercise 10. Let \(L \) be the complex Dirac structure associated to a generalized complex structure \(J \), and let \(K_L \) be the complex pure spinor line defining \(L \). Use the Mukai pairing to demonstrate that \(2c_1(K_L) = c_1^+ + c_1^- \) where \(c_1^\pm \) are the first Chern classes of the \(U(n,n) \) structure defined by \(J \). Explain why \(c_1^+ + c_1^- \) must be even a priori.

Exercise 11. Let \(J \) be a generalized complex structure on the exact Courant algebroid \(E \) such that \(JT^* = T^* \). Write the decomposition of \(J \) given a general (non-complex) splitting \(s : T \to E \). Hint: determine the difference between the splittings \(s \) and \(-JsJ \), where \(J \) is the induced complex structure on \(E/T^* \). How does this compare to the expression of \(J \) in a complex splitting?

Exercise 12. Let \(J \) be an almost generalized complex structure. Show that
\[
N_J(x,y) = [Jx,Jy] - J[Jx,y] - J[x,Jy] - [x,y]
\]
is tensorial, and vanishes if and only if \(J \) is integrable.

Exercise 13. Let \(J \) be a generalized complex structure. Show that \(e^{\theta J}(T^*) \) is a Dirac structure for all \(\theta \).

Exercise 14. Let \((g,I,J) \) define a hyperKähler structure, so that \(JT^* = T^* \). Let \(\omega_I, \omega_J, \omega_K \) be the associated symplectic forms. Verify that for \(a,b,c \) real and \(a^2 + b^2 + c^2 = 1 \),
\[
J(a,b,c) = aJ_I + bJ_J + cJ_K
\]
squares to \(-1\), and is an orthogonal endomorphism of \(T \oplus T^* \). Also prove that for \(a \neq 0 \), \(J(a,b,c) \) is a B-field transform of a symplectic structure. Conclude that \(J(a,b,c) \) is an integrable generalized complex structure for all points on the sphere.

Exercise 15. Give examples of 0- and 2-branes in Example 3. Are there any 4-branes? What about branes of odd dimension?

Exercise 16. Are there 2-branes in the \(\beta \)-deformed \(\mathbb{C}P^2 \) which are not complex curves in \(\mathbb{C}P^2 \)? Are there any 4-branes?

Exercise 17. Let \(J \) be an even generalized complex structure. Then the canonical pure spinor line is a sub-bundle
\[
K \subset \Lambda^*T^* \otimes \mathbb{C}.
\]
the projection \(s : K \to \Lambda^0T^* \otimes \mathbb{C} \) defines a section \(s \in C^\infty(K^*) \). Show that \(\overline{\partial}s = 0 \), where \(\overline{\partial} \) is the generalized Dolbeault operator induced by the generalized complex structure.

Exercise 18. Give an example of a Generalized Kähler structure where both \(J_A, J_B \) are of symplectic type.