Bernoulli Lecture - Empirical Optimal Transport: Inference, Algorithms, Applications   28 May 2020

Part of the Semester : Functional Data Analysis

17:15 - 18:15
Room : BCH 2201


Axel Munk, Georg-August-Universität Göttingen

Following recent developments and in accordance with the restrictions imposed by our authorities, this event as well as all other planned activities of the semester Functional Data Analysis including the workshops, Bernoulli Lectures and the summer school are cancelled.

Optimal transport has a long standing history in different branches of science, originating from physics and logistics. Since its emergence as a rigorous mathematical concept in the last century it has influenced and shaped various areas within mathematics but it also has been proven to a be a remarkably rich and fruitful concept for various related disciplines, such as economics and more recently computer science, machine learning and statistics. In this talk we discuss classical and more recent developments in statistical data analysis based on empirical optimal transport (EOT). Our mathematical fundament are limit laws and risk bounds for EOT plans and distances on finite and discrete spaces. Proofs are based on a combination of sensitivity analysis from convex optimization and discrete empirical process theory. Theory will be used for statistical inference, fast simulation, and for fast randomized computation of optimal transport in large scale data applications at pre-specified computational cost. EOT based data analysis is illustrated in various computer experiments and on biological data from super-resolution cell microscopy.

Name University Dates of visit
Axel Munk Georg-August-Universität Göttingen 28/05/2020 - 28/05/2020
Total Guests : 1
Name University Dates of visit
Total Guests : 0
Conference in Honor of the 70th Birthday of Tudor Ratiu, 20 to 24 July 2020.
Registration fees of CHF 50.- are mandatory for visits from 1 day to full attendance of the conference.
Cancellations and no-shows are not eligible for a refund.
I hereby agree to the conditions of the registration fees and to settling the amount by 28 February 2020.

Last Name
First Name
Zip Code